Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842561

RESUMO

Crack formation in concrete is one of the main reasons for concrete degradation. Calcium alginate capsules containing biological self-healing agents for cementitious materials were studied for the self-healing of cement paste and mortars through in vitro characterizations such as healing agent survivability and retention, material stability, and biomineralization, followed by in situ self-healing observation in pre-cracked cement paste and mortar specimens. Our results showed that bacterial spores fully survived the encapsulation process and would not leach out during cement mixing. Encapsulated bacteria precipitated CaCO3 when exposed to water, oxygen, and calcium under alkaline conditions by releasing CO32- ions into the cement environment. Capsule rupture is not required for the initiation of the healing process, but exposure to the right conditions are. After 56 days of wet-dry cycles, the capsules resulted in flexural strength regain as high as 39.6% for the cement mortar and 32.5% for the cement paste specimens. Full crack closure was observed at 28 days for cement mortars with the healing agents. The self-healing system acted as a biological CO32- pump that can keep the bio-agents retained, protected, and active for up to 56 days of wet-dry incubation. This promising self-healing strategy requires further research and optimization.

2.
J Biomed Mater Res A ; 93(3): 1050-5, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19753621

RESUMO

To understand the in vitro degradation mechanism of magnesium alloy, electrochemical experiments viz., electrochemical impedance spectroscopy and potentiodynamic polarization, were carried out on AZ91 magnesium alloy under different experimental conditions. The study suggests: (i) the body temperature decreases significantly the corrosion resistance of the alloy, (ii) alkali-treatment of the alloy enhances the corrosion resistance, and (iii) although chloride in simulated body fluid minimizes the corrosion resistance, the presence of other constituents viz., phosphate, calcium, and carbonate, enhances the film forming tendency and hence increases the corrosion resistance of the alloy.


Assuntos
Ligas/química , Técnicas Eletroquímicas/métodos , Magnésio/química , Fenômenos Mecânicos , Álcalis/farmacologia , Líquidos Corporais , Fenômenos Mecânicos/efeitos dos fármacos , Potenciometria , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...