Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(18): 29392-29402, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710740

RESUMO

Thin film silicon nitride (<150 nm) waveguide has emerged as a dominant ultra-low-loss platform for many loss-critical applications. While thin-film silicon nitride propagation loss is a crucial characteristic, coupling light between an optical fiber and the waveguide is still challenging. While the larger mode size of the decoupled thin waveguide offers better coupling than a highly-confined waveguide, the coupling efficiency is still sub-optimal. The poor diffraction efficiency of such thin films limits the scope of implementing standalone surface gratings. We demonstrate an efficient way to couple into thin film silicon nitride waveguides using amorphous silicon strip gratings. The high contrast gratings provide an efficient means to boost the directionality from thin films leading to an enhanced coupling performance. In addition, we incorporate a bottom reflector to further improve the coupling. We present an optimal design for uniform strip gratings with a maximum coupling efficiency of -1.7 dB/coupler. We achieved a maximum coupling efficiency of -0.28 dB/coupler by engineering the scattering strength along the grating through apodization. We have experimentally shown the highest coupling efficiency reported yet of -2.22 dB/coupler and -1.84 dB/coupler for uniform and apodized grating couplers in the C-L band. We present a detailed design strategy, simulation, fabrication and characterization data on the effect of various parameters on the coupling efficiency.

2.
Appl Opt ; 62(14): 3703-3709, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37706988

RESUMO

We demonstrate the linear and nonlinear characterization of a plasma-enhanced chemical vapor deposited silicon-rich silicon nitride (SRSN) racetrack ring resonator for on-chip applications within the telecommunication wavelength range. The SRSN waveguide parameters are optimized by employing the refractive index profile measured by ellipsometry to achieve flat dispersion in the telecom band. Furthermore, we measure the thermo-optic coefficient of the micro-resonator by analyzing the temperature-dependent transmission spectra and assess it to be 3.2825×10-5 ∘ C -1. Additionally, we study power-dependent transmission spectra to investigate the effect of local heating and nonlinear absorption. The power-dependent transmission spectra exhibit a blueshifting of the resonance peak in the visible and near-IR regions, which indicates the presence of nonlinear losses in that range. The power-dependent transmission spectra almost remain unchanged in the telecom band, revealing the absence of nonlinear losses and excellent thermal stability in that wavelength range. Our experimental results reveal that the SRSN-based structure can be employed potentially to realize linear and nonlinear applications in the telecom band.

3.
Opt Lett ; 47(18): 4704-4707, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107068

RESUMO

We demonstrate an on-chip in-plane polarization independent multi-spectral color filter in the visible to near-infrared wavelength band. We experimentally show a four-channel transmission and in-plane spectral filter characteristics spanning a 400-nm spectral range. Engineered 2D guided mode resonance structures in a silicon nitride-on-sapphire substrate are used to realize the filters. The in-plane color filters could provide the necessary impetus for developing robust integrated photonic platforms for on-chip devices and applications.

4.
RSC Adv ; 8(49): 27946-27955, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35542719

RESUMO

This work demonstrates the fabrication of chalcogenide microstructures such as gratings, lenses and needles using a lithographically directed, evaporative self-organization of chalcogenide thin liquid films for the first time. Using a two-step annealing protocol, excess solvent of freshly coated ChG films is eliminated and then the liquid films are patterned using elastomeric masters with continuous or disconnected features during solvent evaporation. Although microcontact printing or capillary flow lithography has been proven to be useful to create continuous gratings and waveguide like structures in solid films, our method overcomes the limitation of structural continuity of the generated pattern and uses self-organization of solute ChG within the master's confinement to produce isolated microstructures. Fabrication of disjointed arrays of microlenses of various dimensions as well as conical shaped needles in ChG thin films has been demonstrated for relevant optical IR applications. This methodology establishes evaporative self-organization of ChG thin films as a viable alternative to creating microstructures in bulk ChG with hot-embossing, bypassing the need for ultra high temperature processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...