Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Isotopes Environ Health Stud ; 59(3): 248-268, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37210706

RESUMO

Rainforests play an important role in hydrological and carbon cycles, both at regional and global scales. They pump large quantities of moisture from the soil to the atmosphere and are major rainfall hotspots of the world. Satellite-observed stable water isotope ratios have played an essential role in determining sources of moisture in the atmosphere. Satellites provide information about the processes involving vapour transport in different zones of the world, identifying sources of rainfall and distinguishing moisture transport in monsoonal systems. This paper focuses on major rainforests of the world (Southern Amazon, Congo and Northeast India) to understand the role of continental evapotranspiration in influencing tropospheric water vapour. We have used satellite measurements of 1H2H16O/1H216O from Atmospheric InfraRed Sounder (AIRS), evapotranspiration (ET), solar-induced fluorescence (SIF), precipitation (P), atmospheric reanalysis-derived moisture flux convergence (MFC) and wind to discern the role of ET in influencing water vapour isotopes. A global map of the correlation between δ2Hv and ET-P flux indicates that densely vegetated regions in the tropics show the highest positive correlation (r > 0.5). Using mixing models and observations of specific humidity and isotopic ratio over these forested regions, we discern the source of moisture in pre-wet and wet seasons.


Assuntos
Atmosfera , Vapor , Isótopos de Oxigênio/análise , Estações do Ano , Gases
2.
Sci Rep ; 9(1): 18646, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819130

RESUMO

Variations in isotopic composition of water vapor in the atmosphere is an important indicator of the processes within the hydrological cycle. Isotopic signature of water vapor and precipitation can be helpful in partitioning evaporation and transpiration fluxes. It is well known that transpiration from forested regions supplies a significant amount of vapor to the atmosphere in monsoon and post-monsoon seasons. Here, we utilize observations from Tropospheric Emission Spectrometer (TES), Atmospheric Infra-Red Sounder (AIRS) and simulation models to ascertain that transpiration is dominant in the forests of Northeast India (NE) during pre-monsoon season. Our results show an increase in δD of 78.0 ± 7.1‰ and in specific humidity of 3.1 ± 0.2 g kg-1 during the pre-monsoon months of April-May compared to January-February. In the monsoon months of July-August, δD reduces by 53.0 ± 6.5‰ albeit the specific humidity increases by 3.4 ± 0.2 g kg-1. Using joint observations of specific humidity and isotope ratio in lower troposphere, we discern the moisture sources over NE India in pre-monsoon and monsoon seasons and posit the role of transpiration in continental recycling during pre-monsoon season.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...