Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 76: 127116, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36481602

RESUMO

BACKGROUND: Fenugreek is known to have good anti-diabetes properties. Moreover, several studies accounted that the trivalent form of chromium [Cr(III)] also have anti-diabetic properties. However, its hexavalent form i.e., Cr(VI) is known to be highly toxic and carcinogenic to living beings and retarded plant growth even if it is present in low concentration in soil. Many plant growth-promoting rhizobacteria (PGPR) are reported to have the potential to reduce the Cr(VI) into Cr(III) in soil. In view of the above, the present objective was designed to effectively utilize Cr(VI) reducing PGPRs for the growth and development of fenugreek plant in Cr(VI) amended soil, apart from reducing Cr(VI) in soil and fortification of Cr(III) in the aerial part of plants. METHODS: The experiment was carried out to evaluate the effect of Cr(VI)-reducing PGPRs viz. Bacillus cereus (SUCR44); Microbacterium sp. (SUCR140); Bacillus thuringiensis (SUCR186) and B. subtilis (SUCR188) on growth, uptake and translocation of Cr as well as other physiological parameters in fenugreek grown under artificially Cr(VI) amended soil (100 mg kg-1 of Cr(VI) in soil). RESULTS: The aforementioned concentration of Cr(VI) in soil cause severe reduction in root length (41 %), plant height (43 %), dry root (38 %) and herb biomass (48 %), when compared with control negative (CN; uninoculated plant not grown in Cr(VI) contaminated soil). However, the presence of Microbacterium sp.-SURC140 (MB) mitigates the Cr toxicity resulting in improved root length (92 %), plant height (86 %), dry root (74 %) and herb biomass (99 %) as compared with control positive (CP; uninoculated plants grown in Cr(VI) contaminated soil). The maximum reduction in bioavailability (82 %) of Cr(VI) in soil and its uptake (50 %) by the plant were also observed in MB-treated plants. However, All Cr(VI)-reducing PGPRs failed to decrease the translocation of Cr to the aerial parts. Moreover, the plant treated with MB observed diminution in relative water content (13 %), electrolyte leakage (16%) and lipid peroxidation (38 %) as well as higher chlorophyll (37 %) carotenoids (17 %) contents and antioxidants (18%) potential. CONCLUSION: This study demonstrates that MB can lower the Cr(VI) toxicity to the plant by reducing the bioavailable Cr(VI), consequently reducing the Cr(VI) toxicity level in soil and helping in improving the growth and yield of fenugreek. Additionally, Cr(III) uptakes and translocation may improve the effectiveness of fenugreek in treating diabetes.


Assuntos
Solo , Trigonella , Cromo/toxicidade , Cromo/análise , Desenvolvimento Vegetal
2.
Arch Microbiol ; 204(10): 614, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088522

RESUMO

An integrated approach involving vermicompost, chromate reducing bacteria and AMF was tested to manage the toxic impacts of Cr(VI) on Ocimum basilicum as a model plant. Pot experiments were conducted on O. basilicum plants in an artificially Cr(VI)-contaminated soil in two phases of experiment as bioinoculants experiment and vermicompost experiment. In the first phase of the bioinoculants experiment the series of gradient concentrations of Cr(VI) (0, 25, 50 and 100 mg kg-1 in soil) were evaluated with previously isolated four efficient Cr(VI)-reducing rhizo-bacterial strains (Bacillus Cereus strain SUCR 44, BC; Microbacterium sp. strain SUCR 140, MB; Bacillus thuringiensis strain SUCR186, BT; and Bacillus subtilis strain SUCR188; BS) along with Arbuscular Mycorrhizal Fungus-Glomus fasciculatum (GF) in alone and in co-inoculation form. In the second experiment (vermicompost) the best performing strain (MB) was tested alone or in combination with GF along with different doses of vermicompost. It was observed that vermicompost by itself could be useful in decreasing the bioavailable Cr(VI), uptake of Cr besides improving the nutritional status of plants. The vermicompost also played an important and indirect role and improved herb yield by supporting the multiplication of MB (Microbacterium sp.), an efficient chromate reducing rhizobacteria, that further decreased the bioavailable and toxic form of Cr and improved population and colonization of GF too. The translocation of Cr(VI) was averted through improved colonization of GF, also prevented higher accumulation of Cr in aerial parts (leafy herb) of O. basilicum.


Assuntos
Alphaproteobacteria , Micorrizas , Ocimum basilicum , Poluentes do Solo , Bacillus cereus , Cromatos , Cromo , Plantas , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
Braz J Microbiol ; 52(4): 1791-1805, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34339015

RESUMO

Endophytes are regarded with immense potentials in terms of plant growth promoting (PGP) elicitors and mimicking secondary metabolites of medicinal importance. Here in the present study, we explored Bacopa monnieri plants to isolate, identify fungal endophytes with PGP elicitation potentials, and investigate secretion of secondary metabolites such as bacoside and withanolide content under in vitro conditions. Three fungal endophytes isolated (out of 40 saponin producing isolates) from leaves of B. monnieri were examined for in vitro biosynthesis of bacosides. On morphological, biochemical, and molecular identification (ITS gene sequencing), the isolated strains SUBL33, SUBL51, and SUBL206 were identified as Nigrospora oryzae (MH071153), Alternaria alternata (MH071155), and Aspergillus terreus (MH071154) respectively. Among these strains, SUBL33 produced highest quantity of Bacoside A3 (4093 µg mL-1), Jujubogenin isomer of Bacopasaponin C (65,339 µg mL-1), and Bacopasaponin C (1325 µg mL-1) while Bacopaside II (13,030 µg mL-1) was produced by SUBL51 maximally. Moreover, these aforementioned strains also produced detectable concentration of withanolides-Withaferrin A, Withanolide A (480 µg mL-1), and Withanolide B (1024 µg mL-1) respectively. However, Withanolide A was not detected in the secondary metabolites of strain SUBL51. To best of our knowledge, the present study is first reports of Nigrospora oryzae as an endophyte in B. monnieri with potentials of biosynthesis of economically important phytomolecules under in vitro conditions.


Assuntos
Bacopa , Endófitos , Fungos , Saponinas , Vitanolídeos , Alternaria/genética , Alternaria/isolamento & purificação , Alternaria/metabolismo , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Aspergillus/genética , Aspergillus/isolamento & purificação , Aspergillus/metabolismo , Bacopa/microbiologia , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Folhas de Planta/microbiologia , Saponinas/biossíntese , Vitanolídeos/metabolismo
4.
Sci Rep ; 5: 15500, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26503744

RESUMO

An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants.


Assuntos
Bactérias/isolamento & purificação , Desenvolvimento Vegetal , Plantas/microbiologia , Rizosfera , Biomassa
5.
ISME J ; 8(12): 2445-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24926862

RESUMO

Anthropogenic disturbances are detrimental to the functioning and stability of natural ecosystems. Critical ecosystem processes driven by microbial communities are subjected to these disturbances. Here, we examine the stabilizing role of bacterial diversity on community biomass in the presence of abiotic perturbations such as addition of heavy metals, NaCl and warming. Bacterial communities with a diversity gradient of 1-12 species were subjected to the different treatments, and community biomass (OD600) was measured after 24 h. We found that initial species richness and phylogenetic structure impact the biomass of communities. Under abiotic perturbations, the presence of tolerant species in community largely contributed in community biomass production. Bacterial diversity stabilized the biomass across the treatments, and differential response of bacterial species to different perturbations was the key reason behind these effects. The results suggest that biodiversity is crucial for maintaining the stability of ecosystem functioning and acts as ecological insurance under abiotic perturbations. Biodiversity in natural ecosystems may also uphold the ecosystem functioning under anthropogenic disturbance.


Assuntos
Bactérias/classificação , Biodiversidade , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Biomassa , Ecossistema , Temperatura Alta , Metais Pesados/farmacologia , Filogenia , Cloreto de Sódio/farmacologia
6.
Arch Environ Contam Toxicol ; 66(4): 616-27, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24535090

RESUMO

Pot culture experiments were performed under controlled greenhouse conditions to investigate whether four Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) were able to decrease Cr toxicity to Pisum sativum plants in artificially Cr(VI)-contaminated soil. The effect of pretreatment of soil with chromate-reducing bacteria on plant growth, chromate uptake, bioaccumulation, nodulation, and population of Rhizobium was found to be directly influenced by the time interval between bacterial treatment and seed sowing. Pretreatment of soil with SUCR140 (Microbacterium sp.) 15 days before sowing (T+15) showed a maximum increase in growth and biomass in terms of root length (93 %), plant height (94 %), dry root biomass (99 %), and dry shoot biomass (99 %). Coinoculation of Rhizobium with SUCR140 further improved the aforementioned parameter. Compared with the control, coinoculation of SUCR140+R showed a 117, 116, 136, and 128 % increase, respectively, in root length, plant height, dry root biomass, and dry shoot biomass. The bioavailability of Cr(VI) decreased significantly in soil (61 %) and in uptake (36 %) in SUCR140-treated plants; the effects of Rhizobium, however, either alone or in the presence of SUCR140, were not significant. The populations of Rhizobium (126 %) in soil and nodulation (146 %) in P. sativum improved in the presence of SUCR140 resulting in greater nitrogen (54 %) concentration in the plants. This study shows the usefulness of efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through decreased Cr toxicity and improved symbiotic relationship of the plants with Rhizobium. Further decrease in the translocation of Cr(VI) through improved nodulation by Rhizobium in the presence of efficient Cr-reducing bacterial strains could also decrease the accumulation of Cr in shoots.


Assuntos
Cromo/metabolismo , Recuperação e Remediação Ambiental/métodos , Pisum sativum/fisiologia , Rhizobiaceae/fisiologia , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Cromatos/metabolismo , Cromo/análise , Cromo/toxicidade , Pisum sativum/efeitos dos fármacos , Pisum sativum/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
7.
Environ Sci Pollut Res Int ; 21(3): 1971-1979, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24014225

RESUMO

Pot culture experiments were conducted in a glasshouse to evaluate the effects of four efficient Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) isolated from rhizospheric soil, and four arbuscular mycorrhizal fungi (AMF-Glomus mosseae, G. aggregatum, G. fasciculatum, and G. intraradices) alone or in combination, on Zea mays in artificially Cr(VI)-amended soil. Presence of a strain of Microbacterium sp. SUCR140 reduced the chromate toxicity resulting in improved growth and yields of plants compared to control. The bioavailability of Cr(VI) in soil and its uptake by the plant reduced significantly in SUCR140-treated plants; the effects of AMF, however, either alone or in presence of SUCR140 were not significant. On the other hand, presence of AMF significantly restricted the transport of chromium from root to the aerial parts of plants. The populations of AMF chlamydospores in soil and its root colonization improved in presence of SUCR140. This study demonstrates the usefulness of an efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through reducing toxicity to plants by lowering bioavailability and uptake of Cr(VI) and improving nutrient availability through increased mycorrhizal colonization which also restricted the transport of chromium to the aerial parts.


Assuntos
Cromo/toxicidade , Micorrizas/crescimento & desenvolvimento , Microbiologia do Solo , Zea mays/microbiologia , Biodegradação Ambiental , Cromatos/farmacologia , Cromo/análise , Mycobacteriaceae/classificação , Mycobacteriaceae/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas/microbiologia , Solo/química , Poluentes do Solo/farmacologia
8.
Environ Sci Pollut Res Int ; 20(3): 1661-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22983604

RESUMO

Four efficient Cr(VI)-reducing bacterial strains were isolated from rhizospheric soil of plants irrigated with tannery effluent and investigated for in vitro Cr(VI) reduction. Based on 16S rRNA gene sequencing, the isolated strains SUCR44, SUCR140, SUCR186, and SUCR188 were identified as Bacillus sp. (JN674188), Microbacterium sp. (JN674183), Bacillus thuringiensis (JN674184), and Bacillus subtilis (JN674195), respectively. All four isolates could completely reduce Cr(VI) in culture media at 0.2 mM concentration within a period of 24-120 h; SUCR140 completely reduced Cr(VI) within 24 h. Assay with the permeabilized cells (treated with Triton X-100 and Tween 80) and cell-free assay demonstrated that the Cr(VI) reduction activity was mainly associated with the soluble fraction of cells. Considering the major amount of chromium being reduced within 24-48 h, these fractions could have been released extracellularly also during their growth. At the temperature optima of 28 °C and pH 7.0, the specific activity of Cr(VI) reduction was determined to be 0.32, 0.42, 0.34, and 0.28 µmol Cr(VI)min(-1)mg(-1) protein for isolates SUCR44, SUCR140, SUCR186, and SUCR188, respectively. Addition of 0.1 mM NADH enhanced the Cr(VI) reduction in the cell-free extracts of all four strains. The Cr(VI) reduction activity in cell-free extracts of all the isolates was stable in presence of different metal ions tested except Hg(2+). Beside this, urea and thiourea also reduced the activity of chromate reduction to significant levels.


Assuntos
Bacillus/metabolismo , Cromatos/metabolismo , Cromo/metabolismo , Poluentes do Solo , Curtume , Bacillus/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Sequência de Bases , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Poluentes do Solo/análise , Temperatura
9.
Mycorrhiza ; 23(1): 35-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22648372

RESUMO

Root rot and wilt, caused by a complex involving Fusarium chlamydosporum (Frag. and Cif.) and Ralstonia solanacearum (Smith), are serious diseases affecting the cultivation of Coleus forskohlii, a crop with economic potential as a source of the medicinal compound forskolin. The present 2-year field experiments were conducted with two bioinoculants (a native Pseudomonas monteilii strain and the exotic arbuscular mycorrhizal (AM) fungus Glomus fasciculatum) alone and in combination under organic field conditions in order to evaluate their potential in controlling root rot and wilt. Combined inoculation of P. monteilii with G. fasciculatum significantly increased plant height, plant spread, and number of branches; reduced disease incidence; and increased tuber dry mass of C. forskohlii, compared to vermicompost controls not receiving any bioinoculants. Increase in tuber yields was accompanied by an increase in plant N, P, and K uptake. Co-inoculation of P. monteilii with G. fasciculatum significantly improved the percent AM root colonization and spore numbers retrieved from soil. This suggests P. monteilii to be a mycorrhiza helper bacterium which could be useful in organic agriculture. The forskolin content of tubers was significantly increased by the inoculation treatments of P. monteilii, G. fasciculatum, and P. monteilii + G. fasciculatum.


Assuntos
Coleus/microbiologia , Glomeromycota/fisiologia , Micorrizas/fisiologia , Doenças das Plantas/imunologia , Raízes de Plantas/microbiologia , Pseudomonas/fisiologia , Sequência de Bases , Transporte Biológico , Biomassa , Coleus/crescimento & desenvolvimento , Coleus/imunologia , Colforsina/análise , Colforsina/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fusarium/patogenicidade , Glomeromycota/isolamento & purificação , Dados de Sequência Molecular , Micorrizas/isolamento & purificação , Agricultura Orgânica , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/imunologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/imunologia , Brotos de Planta/microbiologia , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Ralstonia/patogenicidade , Análise de Sequência de DNA , Solo , Simbiose
10.
World J Microbiol Biotechnol ; 28(1): 323-33, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22806808

RESUMO

The usefulness of vermicompost as a supporting media for growth of bioinoculants was evaluated for successful transfer of sufficient propagules of bioinoculants into the organic fields. The rooted plants after 50 days were pot and field tested for their growth and yield performances when transplanted along with rooting medium into pots/organic fields. The rooting medium, 50 days of inoculation, contained sufficient population of bioinoculants and arbuscular mycorrhizal (AM) fungi. Treatment with bioinoculants (except Trichoderma harzianum) substantially improved the root and shoot biomass of nursery raised rooted cuttings particularly in treatments containing Azotobacter chroococcum (150 and 91.67%, respectively), Glomus intraradices (117 and 91.67%, respectively) and Pseudomonas fluorescens (117 and 83%, respectively). The transplanted rooted plants in pots, over two harvests, yielded higher shoot biomass when rooting medium contained A. chroococcum (147%), G. intraradices (139%) and P. fluorescencs (139%). Although the treatments did not affect the content of essential oil, the quality of essential oil as measured by the content of patchouli alcohol improved with Glomus aggregatum (18%). Similar trends were observed in field trials with significantly higher biomass yield achieved with A. chroococcum (51%), G. intraradices (46%) and P. fluorescencs (17%) compared to control (un-inoculated) plots. Increased in herb yield was found to be related with increased nutrient uptake. The population of bioinoculants in the rhizosphere was observed to be considerably higher in plots receiving vermicompost enriched with bioinoculants. This technology can be a successful way of delivering sufficient propagules of bioinoculants along with vermicompost especially in organic fields.


Assuntos
Lamiaceae/crescimento & desenvolvimento , Lamiaceae/microbiologia , Micorrizas/fisiologia , Biomassa , Biotecnologia , Lamiaceae/química , Óleos Voláteis/isolamento & purificação , Agricultura Orgânica/métodos , Solo , Microbiologia do Solo , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...