Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446427

RESUMO

Silicon (Si) nano-electronics is advancing towards the end of the Moore's Law, as gate lengths of just a few nanometers have been already reported in state-of-the-art transistors. In the nanostructures that act as channels in transistors or depletion layers in pn diodes, the role of dopants becomes critical, since the transport properties depend on a small number of dopants and/or on their random distribution. Here, we present the possibility of single-charge tunneling in codoped Si nanodevices formed in silicon-on-insulator films, in which both phosphorus (P) donors and boron (B) acceptors are introduced intentionally. For highly doped pn diodes, we report band-to-band tunneling (BTBT) via energy states in the depletion layer. These energy states can be ascribed to quantum dots (QDs) formed by the random distribution of donors and acceptors in such a depletion layer. For nanoscale silicon-on-insulator field-effect transistors (SOI-FETs) doped heavily with P-donors and also counter-doped with B-acceptors, we report current peaks and Coulomb diamonds. These features are ascribed to single-electron tunneling (SET) via QDs in the codoped nanoscale channels. These reports provide new insights for utilizing codoped silicon nanostructures for fundamental applications, in which the interplay between donors and acceptors can enhance the functionalities of the devices.

2.
Materials (Basel) ; 15(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888413

RESUMO

Carbon nanotubes (CNTs) are ultimately small structures, attractive for future nanoelectronics. CNT-bundles on Si nanostructures can offer an alternative pathway to build hybrid CMOS-compatible devices. To develop a simple method of using such CNT-bundles as transistor channels, we fabricated semiconductor single-walled CNT field-effect transistors using inkjet printing on a CMOS-compatible platform. We investigated a method of producing stable CNT solutions without surfactants, allowing for CNT debundling and dispersion. An inkjet-printing system disperses CNT-networks with ultimately low density (down to discrete CNT-bundles) in Al source-drain gaps of transistors. Despite the small number of networks and random positions, such CNT-bundles provide paths to the flow current. For enhanced controllability, we also demonstrate the manipulation of CNT-networks using an AFM technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...