Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 5(6): 1021-1030, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28324409

RESUMO

Toll-like receptors (TLRs) and nucleotide binding and oligomerization domain (NOD) receptors are pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play crucial role in innate immunity. In addition to PAMPs, PRRs recognize endogenous molecules released from damaged tissue or dead cells [damage-associated molecular patterns (DAMPs)] and activate signaling cascades to induce inflammatory processes. In the aquatic environment, large variation in seasonal and diurnal water temperature causes heat and cold stresses in fish, resulting in tissue injury and mortality of fish. In the Indian subcontinent, catla (Catla catla) is an economically important freshwater fish species and is prone to thermal stresses. To investigate the response of pattern recognition receptors in thermal stress, we analyzed TLRs (TLR2, TLR4 and TLR5) and NOD (NOD1 and NOD2) receptors gene expression in catla following heat and cold stress. Analysis of tissue samples (gill, liver, kidney and blood) of the thermal stressed and control fish by quantitative real-time PCR (qRT-PCR) assay revealed significant (p < 0.05) induction of TLR2, TLR4 and NOD2 gene expression in majority of the tested tissues of the treated fish as compared to the control. The expression of TLR5 and NOD1 gene was also induced in the heat and cold stressed fish, but mostly restricted in the blood. The downstream signaling molecule of TLR and NOD signaling pathway viz., MyD88 (myeloid differentiation primary response gene 88) and RICK (receptor interacting serine-threonine protein kinase-2) was also induced in the thermal stressed fish suggesting the engagement of TLR and NOD signaling pathway during thermal stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...