Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging Inform Med ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724760

RESUMO

Semantic segmentation of tumours plays a crucial role in fundamental medical image analysis and has a significant impact on cancer diagnosis and treatment planning. UNet and its variants have achieved state-of-the-art results on various 2D and 3D medical image segmentation tasks involving different imaging modalities. Recently, researchers have tried to merge the multi-head self-attention mechanism, as introduced by the Transformer, into U-shaped network structures to enhance the segmentation performance. However, both suffer from limitations that make networks under-perform on voxel-level classification tasks, the Transformer is unable to encode positional information and translation equivariance, while the Convolutional Neural Network lacks global features and dynamic attention. In this work, a new architecture named TCTNet Tumour Segmentation with 3D Direction-Wise Convolution and Transformer) is introduced, which comprises an encoder utilising a hybrid Transformer-Convolutional Neural Network (CNN) structure and a decoder that incorporates 3D Direction-Wise Convolution. Experimental results show that the proposed hybrid Transformer-CNN network structure obtains better performance than other 3D segmentation networks on the Brain Tumour Segmentation 2021 (BraTS21) dataset. Two more tumour datasets from Medical Segmentation Decathlon are also utilised to test the generalisation ability of the proposed network architecture. In addition, an ablation study was conducted to verify the effectiveness of the designed decoder for the tumour segmentation tasks. The proposed method maintains a competitive segmentation performance while reducing computational effort by 10% in terms of floating-point operations.

2.
J Med Syst ; 47(1): 73, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432493

RESUMO

Medical image analysis plays a pivotal role in the evaluation of diseases, including screening, surveillance, diagnosis, and prognosis. Liver is one of the major organs responsible for key functions of metabolism, protein and hormone synthesis, detoxification, and waste excretion. Patients with advanced liver disease and Hepatocellular Carcinoma (HCC) are often asymptomatic in the early stages; however delays in diagnosis and treatment can lead to increased rates of decompensated liver diseases, late-stage HCC, morbidity and mortality. Ultrasound (US) is commonly used imaging modality for diagnosis of chronic liver diseases that includes fibrosis, cirrhosis and portal hypertension. In this paper, we first provide an overview of various diagnostic methods for stages of liver diseases and discuss the role of Computer-Aided Diagnosis (CAD) systems in diagnosing liver diseases. Second, we review the utility of machine learning and deep learning approaches as diagnostic tools. Finally, we present the limitations of existing studies and outline future directions to further improve diagnostic accuracy, as well as reduce cost and subjectivity, while also improving workflow for the clinicians.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Cirrose Hepática/diagnóstico por imagem , Diagnóstico por Computador
3.
JMIR Med Inform ; 9(5): e30153, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33939618

RESUMO

[This corrects the article DOI: 10.2196/24020.].

4.
JMIR Med Inform ; 9(4): e24020, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33664015

RESUMO

BACKGROUND: The prognosis, diagnosis, and treatment of many genetic disorders and familial diseases significantly improve if the family history (FH) of a patient is known. Such information is often written in the free text of clinical notes. OBJECTIVE: The aim of this study is to develop automated methods that enable access to FH data through natural language processing. METHODS: We performed information extraction by using transformers to extract disease mentions from notes. We also experimented with rule-based methods for extracting family member (FM) information from text and coreference resolution techniques. We evaluated different transfer learning strategies to improve the annotation of diseases. We provided a thorough error analysis of the contributing factors that affect such information extraction systems. RESULTS: Our experiments showed that the combination of domain-adaptive pretraining and intermediate-task pretraining achieved an F1 score of 81.63% for the extraction of diseases and FMs from notes when it was tested on a public shared task data set from the National Natural Language Processing Clinical Challenges (N2C2), providing a statistically significant improvement over the baseline (P<.001). In comparison, in the 2019 N2C2/Open Health Natural Language Processing Shared Task, the median F1 score of all 17 participating teams was 76.59%. CONCLUSIONS: Our approach, which leverages a state-of-the-art named entity recognition model for disease mention detection coupled with a hybrid method for FM mention detection, achieved an effectiveness that was close to that of the top 3 systems participating in the 2019 N2C2 FH extraction challenge, with only the top system convincingly outperforming our approach in terms of precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...