Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 6: 345, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052332

RESUMO

Rice blast resistant gene, Pi54 cloned from rice line, Tetep, is effective against diverse isolates of Magnaporthe oryzae. In this study, we prospected the allelic variants of the dominant blast resistance gene from a set of 92 rice lines to determine the nucleotide diversity, pattern of its molecular evolution, phylogenetic relationships and evolutionary dynamics, and to develop allele specific markers. High quality sequences were generated for homologs of Pi54 gene. Using comparative sequence analysis, InDels of variable sizes in all the alleles were observed. Profiling of the selected sites of SNP (Single Nucleotide Polymorphism) and amino acids (N sites ≥ 10) exhibited constant frequency distribution of mutational and substitutional sites between the resistance and susceptible rice lines, respectively. A total of 50 new haplotypes based on the nucleotide polymorphism was also identified. A unique haplotype (H_3) was found to be linked to all the resistant alleles isolated from indica rice lines. Unique leucine zipper and tyrosine sulfation sites were identified in the predicted Pi54 proteins. Selection signals were observed in entire coding sequence of resistance alleles, as compared to LRR domains for susceptible alleles. This is a maiden report of extensive variability of Pi54 alleles in different landraces and cultivated varieties, possibly, attributing broad-spectrum resistance to Magnaporthe oryzae. The sequence variation in two consensus region: 163 and 144 bp were used for the development of allele specific DNA markers. Validated markers can be used for the selection and identification of better allele(s) and their introgression in commercial rice cultivars employing marker assisted selection.

2.
Theor Appl Genet ; 128(7): 1243-59, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25869921

RESUMO

KEY MESSAGE: A set of NILs carrying major blast resistance genes in a Basmati rice variety has been developed. Also, the efficacy of pyramids over monogenic NILs against rice blast pathogen Magnaporthe oryzae has been demonstrated. Productivity and quality of Basmati rice is severely affected by rice blast disease. Major genes and QTLs conferring resistance to blast have been reported only in non-Basmati rice germplasm. Here, we report incorporation of seven blast resistance genes from the donor lines DHMASQ164-2a (Pi54, Pi1, Pita), IRBLz5-CA (Pi2), IRBLb-B (Pib), IRBL5-M (Pi5) and IRBL9-W (Pi9) into the genetic background of an elite Basmati rice variety Pusa Basmati 1 (PB1). A total of 36 near-isogenic lines (NILs) comprising of 14 monogenic, 16 two-gene pyramids and six three-gene pyramids were developed through marker-assisted backcross breeding (MABB). Foreground, recombinant and background selection was used to identify the plants with target gene(s), minimize the linkage drag and increase the recurrent parent genome (RPG) recovery (93.5-98.6 %), respectively, in the NILs. Comparative analysis performed using 50,051 SNPs and 500 SSR markers revealed that the SNPs provided better insight into the RPG recovery. Most of the monogenic NILs showed comparable performance in yield and quality, concomitantly, Pusa1637-18-7-6-20 (Pi9), was significantly superior in yield and stable across four different environments as compared to recurrent parent (RP) PB1. Further, among the pyramids, Pusa1930-12-6 (Pi2+Pi5) showed significantly higher yield and Pusa1633-7-8-53-6-8 (Pi54+Pi1+Pita) was superior in cooking quality as compared to RP PB1. The NILs carrying gene Pi9 were found to be the most effective against the concoction of virulent races predominant in the hotspot locations for blast disease. Conversely, when analyzed under artificial inoculation, three-gene pyramids expressed enhanced resistance as compared to the two-gene and monogenic NILs.


Assuntos
Resistência à Doença/genética , Magnaporthe/patogenicidade , Oryza/genética , Doenças das Plantas/genética , Agricultura , Cruzamento , Culinária , DNA de Plantas/genética , Qualidade dos Alimentos , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Oryza/classificação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
3.
Funct Integr Genomics ; 14(2): 419-29, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24633351

RESUMO

Magnaporthe oryzae causes rice blast that is one of the most devastating diseases of rice worldwide. Highly variable nature of this fungus has evolved itself against major resistance genes in newly released rice varieties. Understanding the population structure of this fungus is essential for proper utilization of the rice blast resistance genes in rice crop plants. In the present study, we analyzed 133 isolates of M. oryzae from ten countries to find the allelic variation of Avr-Pita gene that is triggering Pita-mediated resistance in rice plant. The diversity analysis of these alleles showed higher level of nucleotide variation in the coding regions than the noncoding regions. Evolutionary analysis of these alleles indicates that Avr-Pita gene is under purifying selection to favor its major alleles in 133 isolates analyzed in this study. We hypothesize that the selection of favorable Avr-Pita allele in these isolates may occur through a genetic mechanism known as recurrent selective sweeps. A total of 22 functional Avr-Pita protein variants were identified in this study. Insertion of Pot3 transposable element into the promoter of Avr-Pita gene was identified in virulent isolates and was suggested that mobility of repeat elements in avirulence genes of M. oryzae seems to help in emergence of new virulent types of the pathogen. Allele-specific markers developed in this study will be helpful to identify a particular type of Avr-Pita allele from M. oryzae population which can form the basis for the deployment of Pita gene in different epidemiological regions.


Assuntos
Regulação da Expressão Gênica de Plantas/imunologia , Magnaporthe/patogenicidade , Oryza/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Alelos , Sequência de Aminoácidos , Evolução Biológica , Elementos de DNA Transponíveis , Variação Genética , Haplótipos , Interações Hospedeiro-Patógeno , Magnaporthe/genética , Dados de Sequência Molecular , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Seleção Genética
4.
Funct Integr Genomics ; 13(3): 309-22, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23818197

RESUMO

Rice blast is one of the important diseases of rice which can be effectively managed by the deployment of resistance genes. Pi-ta is one of the major blast resistant genes effective against pathogen populations in different parts of India. We analysed allelic variants of Pi-ta from 48 rice lines selected after phenotyping of 529 rice landraces across three eco-geographical blast hot spot regions. Besides, Pi-ta orthologue sequences of 220 rice accessions belonging to wild and cultivated species of rice were also included in the study for a better evo-devo perspective of the diversity present in the gene and the selection pressures acting on this locus. We obtained high nucleotide variations (SNPs and insertion-deletions) in the intronic region. We also identified 64 haplotypes based on nucleotide polymorphism in these alleles. Pi-ta orthologues of Indian landraces were scattered in eight major haplotypes indicating its heterogenous nature. We identified a total of 47 different Pi-ta protein variants on the basis of deduced amino acid residues amongst the orthologues. Five unique and novel Pi-ta variants were identified for the first time in rice landraces exhibiting different reaction types against the Magnaporthe oryzae population. A high value of Pi(non/syn) was observed only in the leucine-rich domain of the alleles cloned from Indian landraces, indicating strong selective forces acting on this region. The detailed molecular analysis of the Pi-ta orthologues provides insights to a high degree of inter- and intraspecific relationships amongst the Oryza species. We identified rice landraces possessing the effective alleles of this resistance gene which can be used in future blast resistance breeding programmes.


Assuntos
Resistência à Doença/genética , Magnaporthe/patogenicidade , Doenças das Plantas/genética , Proteínas de Plantas/genética , Receptores Citoplasmáticos e Nucleares/genética , Sequência de Aminoácidos , Sequência de Bases , Genética Populacional , Haplótipos , Imunidade Inata/genética , Índia , Íntrons , Magnaporthe/genética , Oryza , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Análise de Sequência de DNA
5.
AoB Plants ; 2012: pls029, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23125910

RESUMO

BACKGROUND AND AIMS: Basmati rice grown in the Indian subcontinent is highly valued for its unique culinary qualities. Production is, however, often constrained by diseases such as bacterial blight (BB), blast and sheath blight (ShB). The present study developed Basmati rice with inbuilt resistance to BB, blast and ShB using molecular marker-assisted selection. METHODOLOGY: The rice cultivar 'Improved Pusa Basmati 1' (carrying the BB resistance genes xa13 and Xa21) was used as the recurrent parent and cultivar 'Tetep' (carrying the blast resistance gene Pi54 and ShB resistance quality trait loci (QTL), qSBR11-1) was the donor. Marker-assisted foreground selection was employed to identify plants possessing resistance alleles in the segregating generations along with stringent phenotypic selection for faster recovery of the recurrent parent genome (RPG) and phenome (RPP). Background analysis with molecular markers was used to estimate the recovery of RPG in improved lines. PRINCIPAL RESULTS: Foreground selection coupled with stringent phenotypic selection identified plants homozygous for xa13, Xa21 and Pi54, which were advanced to BC(2)F(5) through pedigree selection. Marker-assisted selection for qSBR11-1 in BC(2)F(5) using flanking markers identified seven homozygous families. Background analysis revealed that RPG recovery was up to 89.5%. Screening with highly virulent isolates of BB, blast and ShB showed that the improved lines were resistant to all three diseases and were on a par with 'Improved Pusa Basmati 1' for yield, duration and Basmati grain quality. CONCLUSIONS: This is the first report of marker-assisted transfer of genes conferring resistance to three different diseases in rice wherein genes xa13 and Xa21 for BB resistance, Pi54 for blast resistance, and a major QTL qSBR11-1 have been combined through marker-assisted backcross breeding. In addition to offering the potential for release as cultivars, the pyramided lines will serve as useful donors of gene(s) for BB, blast and ShB in future Basmati rice breeding programmes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...