Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
European J Org Chem ; 2022(28)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36120398

RESUMO

Fluorescently labelled alanine scan analogues of odorranalectin (OL), a cyclic peptide that exhibits lectin like properties, were screened for binding BSA-conjugated monosaccharides using an enzyme-linked lectin assay (ELLA). Results revealed that Lys5, Phe7, Tyr9, Gly12, Leu14, and Thr17 were crucial for binding BSA-L-fucose, BSA-D-galactose and BSA-N-acetyl-D-galactosamine. Notably, Ala substitution of Ser3, Pro4, and Val13 resulted in higher binding affinities compared to the native OL. The obtained data also indicated that Arg8 plays an important role in differentiation of binding for BSA-L-fucose/D-galactose from BSA-N-acetyl-D-galactosamine. The thermodynamics of binding of the selected alanine analogues was evaluated by isothermal titration calorimetry. Low to moderate binding affinities were determined for the tetravalent MUC1 glycopeptide and asialofetuin, respectively, and high for the fucose rich polysaccharide, fucoidan. The thermodynamic profile of interactions with asialofetuin exhibits shift to an entropy-driven mechanism compared to the fucoidan, which displayed an enthalpyentropy compensation, typically associated with the carbohydratelectin recognition process.

2.
Front Chem ; 10: 859822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464218

RESUMO

The amyloid-ß precursor protein (APP) undergoes proteolysis by ß- and γ-secretases to form amyloid-ß peptides (Aß), which is a hallmark of Alzheimer's disease (AD). Recent findings suggest a possible role of O-glycosylation on APP's proteolytic processing and subsequent fate for AD-related pathology. We have previously reported that Tyr681-O-glycosylation and the Swedish mutation accelerate cleavage of APP model glycopeptides by ß-secretase (amyloidogenic pathway) more than α-secretase (non-amyloidogenic pathway). Therefore, to further our studies, we have synthesized additional native and Swedish-mutated (glyco)peptides with O-GalNAc moiety on Thr663 and/or Ser667 to explore the role of glycosylation on conformation, secretase activity, and aggregation kinetics of Aß40. Our results show that conformation is strongly dependent on external conditions such as buffer ions and solvent polarity as well as internal modifications of (glyco)peptides such as length, O-glycosylation, and Swedish mutation. Furthermore, the level of ß-secretase activity significantly increases for the glycopeptides containing the Swedish mutation compared to their nonglycosylated and native counterparts. Lastly, the glycopeptides impact the kinetics of Aß40 aggregation by significantly increasing the lag phase and delaying aggregation onset, however, this effect is less pronounced for its Swedish-mutated counterparts. In conclusion, our results confirm that the Swedish mutation and/or O-glycosylation can render APP model glycopeptides more susceptible to cleavage by ß-secretase. In addition, this study sheds new light on the possible role of glycosylation and/or glycan density on the rate of Aß40 aggregation.

3.
ACS Chem Neurosci ; 12(16): 2974-2980, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34324289

RESUMO

The amyloid-ß precursor protein (APP) undergoes proteolytic cleavage by α-, ß-, and γ-secretases, to determine its fate in Alzheimer's disease (AD) pathogenesis. Recent findings suggest a possible role of O-glycosylation in APP's proteolytic processing. Therefore, we synthesized native and Swedish-double-mutated APP (glyco)peptides with Tyr681-O-GalNAc. We studied conformational changes and proteolytic processing using circular dichroism (CD) spectroscopy and enzyme cleavage assay, respectively. CD analysis was carried out in four solvent systems to evaluate peptide environment and O-glycosylation induced conformational changes. The Swedish mutation and Tyr681-O-GalNAc were the key factors driving conformational changes. Furthermore, the level of α- and ß-secretase activity was increased by the presence of mutation and this effect was more pronounced for its glycosylated analogues. Our results suggest that O-glycosylation of Tyr681 can induce a conformational change in APP and affect its proteolytic processing fate toward the amyloidogenic pathway.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Glicopeptídeos , Humanos , Tirosina
4.
Glycoconj J ; 37(6): 657-666, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33001366

RESUMO

Aberrant Mucin-1 (MUC1) glycosylation with the Thomsen-Friedenreich (TF) tumor-associated antigen (CD176) is a hallmark of epithelial carcinoma progression and poor patient prognosis. Recognition of TF by glycan-binding proteins, such as galectins, enables the pathological repercussions of this glycan presentation, yet the underlying binding specificities of different members of the galectin family is a matter of continual investigation. While Galectin-3 (Gal-3) recognition of TF has been well-documented at both the cellular and molecular level, Galectin-1 (Gal-1) recognition of TF has only truly been alluded to in cell-based platforms. Immunohistochemical analyses have purported Gal-1 binding to TF on MUC1 at the cell surface, however binding at the molecular level was inconclusive. We hypothesize that glycan scaffold (MUC1's tandem repeat peptide sequence) and/or multivalency play a role in the binding recognition of TF antigen by Gal-1. In this study we have developed a method for large-scale expression of Gal-1 and its histidine-tagged analog for use in binding studies by isothermal titration calorimetry (ITC) and development of an analytical method based on AlphaScreen technology to screen for Gal-1 inhibitors. Surprisingly, neither glycan scaffold or multivalent presentation of TF antigen on the scaffold was able to entice Gal-1 recognition to the level of affinity expected for functional significance. Future evaluations of the Gal-1/TF binding interaction in order to draw connections between immunohistochemical data and analytical measurements are warranted.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Galectina 1/genética , Mucina-1/genética , Antígenos Glicosídicos Associados a Tumores/genética , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/imunologia , Galectina 1/imunologia , Galectinas/genética , Galectinas/imunologia , Glicopeptídeos/genética , Glicopeptídeos/imunologia , Humanos , Mucina-1/imunologia , Ligação Proteica/genética , Ligação Proteica/imunologia
5.
J Org Chem ; 85(3): 1434-1445, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31799848

RESUMO

One of the main barriers to explaining the functional significance of glycan-based changes in cancer is the natural epitope heterogeneity found on the surface of cancer cells. To help address this knowledge gap, we focused on designing synthetic tools to explore the role of tumor-associated glycans of MUC1 in the formation of metastasis via association with lectins. In this study, we have synthesized for the first time a MUC1-derived positional scanning synthetic glycopeptide combinatorial library (PS-SGCL) that vary in number and location of cancer-associated Tn antigen using the "tea bag" approach. The determination of the isokinetic ratios necessary for the equimolar incorporation of (glyco)amino acids mixtures to resin-bound amino acid was determined, along with developing an efficient protocol for on resin deprotection of O-acetyl groups. Enzyme-linked lectin assay was used to screen PS-SGCL against two plant lectins, Glycine max soybean agglutinin and Vicia villosa. The results revealed a carbohydrate density-dependent affinity trend and site-specific glycosylation requirements for high affinity binding to these lectins. Hence, PS-SGCLs provide a platform to systematically elucidate MUC1-lectin binding specificities, which in the long term may provide a rational design for novel inhibitors of MUC1-lectin interactions involved in tumor spread and glycopeptide-based cancer vaccines.


Assuntos
Glicopeptídeos , Lectinas , Epitopos , Glicosilação , Mucina-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...