Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 190: 114575, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945599

RESUMO

Plant-based proteins offer sustainable and nutritious alternatives to animal proteins with their techno-functional attributes influencing product quality and designer food development. Due to the inherent complexities of plant proteins, proper extraction and modifications are vital for their effective utilization. This review highlights the emerging sources of plant-based proteins, and the recent statistics of the techniques employed for pretreatment, extraction, and modifications. The pretreatment, extraction and modification approach to modify plant proteins have been classified, addressed, and the recent applications of such methodologies are duly indicated. Furthermore, this study furnishes novel perspectives regarding the potential impacts of emerging technologies on the intricate dynamics of plant proteins. A thorough review of 100 articles (2018-2024) shows the researchers' keen interest in investigating novel plant proteins and how they can be used; seeds being the main source for protein extraction, followed by legumes. Use of by-products as a protein source is increasing rapidly, which is noteworthy. Protein studies still lack knowledge on protein fraction, antinutrients, and pretreatments. The use of physical methods and their combination with other techniques are increasing for effective and environmentally friendly extraction and modification of plant proteins. Several studies explore the effect of protein changes on their function and nutrition, especially with a goal of replacing ingredients with plant proteins that have improved or enhanced qualities. However, the next step is to investigate the sophisticated modification methods for deeper insights into food safety and toxicity.


Assuntos
Proteínas de Plantas , Manipulação de Alimentos/métodos
2.
Int J Biol Macromol ; 263(Pt 1): 130120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350581

RESUMO

This study investigates the viscoelastic behavior, gelling properties, and structural characteristics of Deccan hemp seed protein (DHSP) to overcome limitations in its application in food formulations. Small amplitude oscillatory shear measurements were employed to investigate the impact of protein concentration, pH, ionic concentration, and temperature on DHSP's rheological features. The study revealed that the 20 % protein dispersion had the highest storage modulus (G') and yield stress at 63.96 ± 0.23 Pa and 0.61 Pa, respectively. DHSP dispersion exhibited pseudo-plastic behavior across various conditions. The gelling performance was higher at pH 4 and 8 and at ionic concentration in the range of 0.1 M - 0.5 M. Gelation time and temperature were observed from the temperature ramp test. Structural characterizations, including fluorescence spectroscopy, circular dichroism spectra, FTIR spectra, SEM, AFM images, zeta potential analysis, and DSC, provided insights into DHSP's tertiary and secondary conformation, surface characteristics, and thermal properties. Notably, the study highlighted DHSP's exceptional rheological properties, making it a promising gelling material for the food and nutraceutical industries. The findings also offer new insights into DHSP's structural characteristics, suggesting potential applications in food packaging and product development within the food industry.


Assuntos
Cannabis , Hibiscus , Temperatura , Géis , Concentração de Íons de Hidrogênio , Reologia
3.
Foods ; 12(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37174462

RESUMO

This study explains the effect of ultrasound on the extraction of the bioactive compounds from garlic (Allium sativum L.) leaf powder. The experiment was carried out by varying the ultrasound amplitude (30-60%), treatment time (5-15 min), and ethanol concentration (40-60%) required to obtain the maximum extraction yield of total phenol content (TPC), total flavonoid content (TFC), and antioxidant activity. Rotatable central composite design (RCCD) provided experimental parameter combinations in the ultrasound-assisted extraction (UAE) of garlic leaf powder. The values of extraction yield, TPC, TFC, and antioxidant activity for the optimized condition of RSM were obtained at 53% amplitude, 13 min of treatment time, and 50% ethanol concentration. The values of the target compounds predicted at this optimized condition from RSM were 32.2% extraction yield, 9.9 mg GAE/g TPC, 6.8 mg QE/g TFC, and 58% antioxidant activity. The ANN-GA optimized condition for the leaf extracts was obtained at 60% amplitude, 13 min treatment time, and 53% ethanol concentration. The predicted values of optimized condition obtained by ANN-GA were recorded as 32.1738% extraction yield and 9.8661 mg GAE/g, 6.8398 mg QE/g, and 58.5527% for TPC, TFC, and antioxidant activity, respectively. The matured leaves of garlic, if not harvested during its cultivation, often go waste despite being rich in antioxidants and phenolic compounds. With the increased demand for the production of value-added products, the extraction of the bioactive compounds from garlic leaves can resolve waste management and potential health issues without affecting the crop yield through the process for high-end use in value addition.

4.
Carbohydr Polym ; 314: 120905, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173042

RESUMO

Apart from its non-toxicity, biocompatibility and biodegradability, starch has demonstrated eminent functional characteristics, e.g., forming well-defined gels/films, stabilizing emulsions/foams, and thickening/texturizing foods, which make it a promising hydrocolloid for various food purposes. Nonetheless, because of the ever-increasing range of its applications, modification of starch via chemical and physical methods for expanding its capabilities is unavoidable. The probable detrimental impacts of chemical modification on human health have encouraged scientists to develop potent physical approaches for starch modification. In this category, in recent years, starch combination with other molecules (i.e., gums, mucilages, salts, polyphenols) has been an interesting platform for developing modified starches with unique attributes where the characteristics of the fabricated starch could be finely tuned via adjusting the reaction parameters, type of molecules reacting with starch and the concentration of the reactants. The modification of starch characteristics upon its complexation with gums, mucilages, salts, and polyphenols as common ingredients in food formulations is comprehensively overviewed in this study. Besides their potent impact on physicochemical, and techno-functional attributes, starch modification via complexation could also remarkably customize the digestibility of starch and provide new products with less digestibility.


Assuntos
Sais , Amido , Humanos , Amido/química , Polifenóis , Alimentos , Emulsões
5.
Crit Rev Food Sci Nutr ; 63(30): 10412-10443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35653113

RESUMO

The demand for clean labels has increased the importance of natural texture modifying ingredients. Proteins are unique compounds that can impart unique textural and structural changes in food. However, lack of solubility and extensive aggregability of proteins have increased the demand for enzymatically hydrolyzed proteins, to impart functional and structural modifications to food products. The review elaborates the recent application of various proteins, protein hydrolysates, and their role in texture modification. The impact of protein hydrolysates interaction with other food macromolecules, the effect of pretreatments, and dependence of various protein functionalities on textural and structural modification of food products with controlled enzymatic hydrolysis are explained in detail. Many researchers have acknowledged the positive effect of enzymatically hydrolyzed proteins on texture modification over natural protein. With enzymatic hydrolysis, various textural properties including foaming, gelling, emulsifying, water holding capacity have been effectively improved. It is evident that each protein is unique and imparts exceptional structural changes to different food products. Thus, selection of protein requires a fundamental understanding of its structure-substrate property relation. For wider applicability in the industrial sector, more studies on interactions at the molecular level, dosage, functionality changes, and sensorial attributes of protein hydrolysates in food systems are required.


Assuntos
Alimentos , Hidrolisados de Proteína , Hidrolisados de Proteína/química , Hidrólise , Solubilidade
6.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36218326

RESUMO

The recent trend in consumption of plant-based protein over animal protein opens up a new avenue for sustainable agriculture practice, less environmental impact and greenhouse gas emission. The modification of plant-based proteins by novel non-thermal technologies includes the structural transformation followed by the modulation of their functional properties that are exploited to develop a protein ingredient system for application in food formulation. This review explores the impact of non-thermal process technologies on structural modification of plant proteins followed by improvement in protein's function in food formulation. Novel concepts articulating the impact of non-thermal technologies on structural and functional modification of plant proteins affecting it's digestibility and bioavailability are addressed. Limitations and prospects of applying non-thermal technologies in developing an alternative plant-based protein food system are also summarized. Non-thermal processes are considered as the emerging technologies that results in conformational changes in secondary, tertiary and quaternary structure of plant proteins which helps in modification of functional properties without jeopardizing the organoleptic properties and bioactivity of the protein. However, extensive future study is needed to optimize the non-thermal process parameters along with the finding of new protein sources to achieve healthy and sustainable plant-based food system.


• Demand and consumption of plant proteins are increasing compared to animal proteins.• Non-thermal technologies changes protein structure and enhances the bio-functional properties.• Structural and functional modification influences the digestive properties of plant proteins.• Limitations and challenges of non-thermal technologies are addressed.

7.
Food Chem ; 385: 132602, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278731

RESUMO

Synthesis of silver nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the conventional chemical ways. The overall objective of the research was focused on the green synthesis of silver nanoparticles using pomelo peel waste via a rapid and eco-friendly ultrasonic-assisted technique and their characterization. Different factors affecting the synthesis, like methodology for the preparation of extract and various treatment conditions for the synthesis, were also studied. The developed nanoparticles were characterized for their optical, molecular, microstructural, and physical properties by UV-visible spectroscopy, dynamic light scattering (DLS), zeta-potential measurements, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The green synthesized nanoparticles were found almost spherical when treated at room and high temperatures and cubical when treated with ultrasonication. As obtained from the XRD studies, the size of crystallitenanoparticles was 35 to 40 nm in diameter. The EDX, FT-IR, and zeta potential analysis corroborated the role of phenolic compounds in capping and reduction of the metal ion. The capping ability of the polyphenolic component in the extract was used to achieve size stability. The nanoparticles also showed antibacterial activity against gram-negative and gram-positive bacteria, owing to the inherent antibacterial capability of silver nanoparticles.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Química Verde , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
8.
Food Res Int ; 149: 110647, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600649

RESUMO

Non-thermal food processing is a viable alternative to traditional thermal processing to meet customer needs for high-quality, convenient and minimally processed foods. They are designed to eliminate elevated temperatures during processing and avoid the adverse effects of heat on food products. Numerous thermal and novel non-thermal technologies influence food structure at the micro and macroscopic levels. They affect several properties such as rheology, flavour, process stability, texture, and appearance at microscopic and macroscopic levels. This review presents existing knowledge and advances on the impact of non-thermal technologies, for instance, cold plasma treatment, irradiation, high-pressure processing, ultrasonication, pulsed light technology, high voltage electric field and pulsed electric field treatment on the structural changes of food components. An extensive review of the literature indicates that different non-thermal processing technologies can affect the food components, which significantly affects the structure of food. Applications of novel non-thermal technologies have shown considerable impact on food structure by altering protein structures via free radicals or larger or smaller molecules. Lipid oxidation is another process responsible for undesirable effects in food when treated with non-thermal techniques. Non-thermal technologies may also affect starch properties, reduce molecular weight, and change the starch granule's surface. Such modification of food structure could create novel food textures, enhance sensory properties, improve digestibility, improve water-binding ability and improve mediation of gelation processes. However, it is challenging to determine these technologies' influence on food components due to differences in their primary operation and equipment design mechanisms and different operating conditions. Hence, to get the most value from non-thermal technologies, more in-depth research about their effect on various food components is required.


Assuntos
Manipulação de Alimentos , Gases em Plasma , Temperatura Alta , Oxirredução , Paladar
9.
Food Sci Nutr ; 6(7): 1914-1926, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30349681

RESUMO

Distiller's dried grains and garbanzo flour were blended with corn grits for the development of extruded snacks using a single screw extruder. Distiller's dried grains were processed for food application and termed as food grade distiller's dried grains or FDDG. Effects of different level of FDDG addition (0%-20%) and extrusion process parameters such as barrel and die temperature (100-140°C), screw speed (100-200 rpm), and feed moisture content (14%-20% wet basis) on the physical properties (expansion ratio, bulk density, color parameters), functional properties (water absorption and solubility indices), and nutritional properties (total dietary fiber, soluble and insoluble dietary fiber and protein content) of the extrudates were investigated and optimized using response surface methodology. FDDG incorporation had a significant effect (p < 0.05) on the total dietary fiber, color parameters, water solubility, and water absorption indices of the extruded snacks. Desirable expanded extrudates with a high level of total dietary fiber and protein were obtained with blends containing 20% FDDG extruded at 140°C extrusion temperature, 167 rpm screw speed, and 19% feed moisture content. Results indicate garbanzo flour, and FDDG can be successfully blended with corn grits to produce nutritious gluten-free extruded snacks which are high in protein and dietary fiber.

10.
Food Sci Technol Int ; 24(5): 447-462, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29614869

RESUMO

Response surface methodology was used to investigate the single screw extrusion of apple pomace-defatted soy flour-corn grits blends and the product properties. Five different blends at a level of 0-20% w/w apple pomace were extrusion cooked with varied barrel and die temperature (100-140℃), screw speed (100-200 rpm), and feed moisture content (14-20% wet basis). Increasing apple pomace content in the blends significantly ( P < 0.05) increased the bulk density, the total phenolic content, and the antioxidant activity of the extrudates. The expansion ratio increased with pomace inclusion level of 5% but decreased significantly ( P < 0.05) at higher levels of pomace inclusion (10-20%). Moisture content had quadratic influence on water absorption and solubility indices. Optimal extrusion cooking conditions most likely to produce apple pomace-enriched extruded snack products were at 140℃ barrel and die temperature, 20% feed moisture content, and 200 rpm screw speed. The results indicated active interaction between apple pomace and starch during expansion process.


Assuntos
Manipulação de Alimentos/métodos , Frutas , Malus , Antioxidantes/análise , Resíduos Industriais , Modelos Estatísticos , Fenóis/análise , Análise de Regressão , Lanches , Solubilidade , Alimentos de Soja , Água/análise , Zea mays
11.
Food Sci Nutr ; 6(1): 101-110, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29387367

RESUMO

A combination of different levels of distillers dried grains processed for food application (FDDG), garbanzo flour and corn grits were chosen as a source of high-protein and high-fiber extruded snacks. A four-factor central composite rotatable design was adopted to study the effect of FDDG level, moisture content of blends, extrusion temperature, and screw speed on the apparent viscosity, mass flow rate or MFR, torque, and specific mechanical energy or SME during the extrusion process. With increase in the extrusion temperature from 100 to 140°C, apparent viscosity, specific mechanical energy, and torque value decreased. Increase in FDDG level resulted in increase in apparent viscosity, SME and torque. FDDG had no significant effect (p > .5) on mass flow rate. SME also increased with increase in the screw speed which could be due to the higher shear rates at higher screw speeds. Screw speed and moisture content had significant negative effect (p < .05) on the torque. The apparent viscosity of dough inside the extruder and the system parameters were affected by the processing conditions. This study will be useful for control of extrusion process of blends containing these ingredients for the development of high-protein high-fiber extruded snacks.

12.
Food Sci Nutr ; 4(4): 521-33, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27386102

RESUMO

Effects of different freezing rates and four different thawing methods on chemical composition, microstructure, and color of ginger were investigated. Computer simulation for predicting the freezing time of cylindrical ginger for two different freezing methods (slow and fast) was done using ANSYS (®) Multiphysics. Different freezing rates (slow and fast) and thawing methods significantly (P < 0.05) affected the color and composition of essential oil in ginger. Fresh ginger was found to contain 3.60% gingerol and 18.30% zingerone. A maximum yield of 7.43% gingerol was obtained when slow frozen gingers when thawed by infrared method. Maximum zingerone content of 38.30% was achieved by thawing slow frozen gingers using infrared-microwave method. Microscopic examination revealed that structural damage was more pronounced in slow frozen gingers than fast frozen gingers. Simulated freezing curves were in good agreement with experimental measurements (r = 0.97 for slow freezing and r = 0.92 for fast freezing). Slow freezing damaged ginger's cellular structure. Data obtained will be helpful in selecting appropriate thawing method to increase desirable essential oil components in ginger. Computer simulation for predicting freezing time may help in developing proper storage system of ginger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...