Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 16: 836116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281300

RESUMO

The medial septum (MS) is critically involved in theta rhythmogenesis and control of the hippocampal network, with which it is reciprocally connected. MS activity is influenced by brainstem structures, including the stress-sensitive, nucleus incertus (NI), the main source of the neuropeptide relaxin-3 (RLN3). In the current study, we conducted a comprehensive neurochemical and electrophysiological characterization of NI neurons innervating the MS in the rat, by employing classical and viral-based neural tract-tracing and electrophysiological approaches, and multiplex fluorescent in situ hybridization. We confirmed earlier reports that the MS is innervated by RLN3 NI neurons and documented putative glutamatergic (vGlut2 mRNA-expressing) neurons as a relevant NI neuronal population within the NI-MS tract. Moreover, we observed that NI neurons innervating MS can display a dual phenotype for GABAergic and glutamatergic neurotransmission, and that 40% of MS-projecting NI neurons express the corticotropin-releasing hormone-1 receptor. We demonstrated that an identified cholecystokinin (CCK)-positive NI neuronal population is part of the NI-MS tract, and that RLN3 and CCK NI neurons belong to a neuronal pool expressing the calcium-binding proteins, calbindin and calretinin. Finally, our electrophysiological studies revealed that MS is innervated by A-type potassium current-expressing, type I NI neurons, and that type I and II NI neurons differ markedly in their neurophysiological properties. Together these findings indicate that the MS is controlled by a discrete NI neuronal network with specific electrophysiological and neurochemical features; and these data are of particular importance for understanding neuronal mechanisms underlying the control of the septohippocampal system and related behaviors.

2.
Brain Struct Funct ; 222(1): 515-537, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27206427

RESUMO

Arousal and vigilance are essential for survival and relevant regulatory neural circuits lie within the brainstem, hypothalamus and forebrain. The nucleus incertus (NI) is a distinct site within the pontine periventricular gray, containing a substantial population of GABAergic neurons with long-range, ascending projections. Existing neuroanatomical data and functional studies in anesthetized rats, suggest the NI is a central component of a midline behavioral control network well positioned to modulate arousal, vigilance and exploratory navigation, yet none of these roles have been established experimentally. We used a chemogenetic approach-clozapine-N-oxide (CNO) activation of virally delivered excitatory hM3Dq-DREADDs-to activate the NI in rats and examined the behavioral and physiological effects, relative to effects in naïve rats and appropriate viral-treated controls. hM3Dq activation by CNO resulted in long-lasting depolarization of NI neurons with action potentials, in vitro. Peripheral injection of CNO significantly increased c-Fos immunoreactivity in the NI and promoted cortical electroencephalograph (EEG) desynchronization. These brain changes were associated with heightened arousal, and increased locomotor activity in the homecage and in a novel environment. Furthermore, NI activation altered responses in a fear conditioning paradigm, reflected by increased head-scanning, vigilant behaviors during conditioned fear recall. These findings provide direct evidence that the NI promotes general arousal via a broad behavioral activation circuit and support early hypotheses, based on its connectivity, that the NI is a modulator of cognition and attention, and emotional and motivated behaviors.


Assuntos
Nível de Alerta , Comportamento Animal/fisiologia , Sincronização Cortical , Núcleos da Rafe/fisiologia , Animais , Aprendizagem da Esquiva , Ondas Encefálicas , Condicionamento Clássico/fisiologia , Eletroencefalografia , Medo/fisiologia , Neurônios GABAérgicos/metabolismo , Masculino , Atividade Motora , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...