Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indian J Pharm Sci ; 70(6): 721-6, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21369431

RESUMO

Insulin loaded hydrophobic nanoparticles were prepared by solvent diffusion followed by lyophilization. Nanoparticles were characterized for mean size by dynamic laser scattering and for shape by scanning electron microscopy. Insulin encapsulation efficiency, in vitro stability of nanoparticles in presence of proteolytic enzymes and in vitro release were determined by high pressure liquid chromatography analysis. The biological activity insulin from the nanopraticles was estimated by enzyme-linked immunosorbant assay and in vivo using Wister diabetic rats. Nanoparticles ranged 0.526±0.071 µm in diameter. Insulin encapsulation efficiency was 95.7±1.2%. Insulin hydrophobic nanoparticles suppressed insulin release promoted sustained release in pH 7.4 phosphate buffer and shown to protect insulin from enzymatic degradation in vitro in presence of chymotripsin. Nanoencapsulated insulin was bioactive, demonstrated through both in vivo and in vitro.

2.
Indian J Pharm Sci ; 70(6): 727-32, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21369432

RESUMO

Formulation of insulin into a microemulsion very often presents a physicochemical instability during their preparation and storage. In order to overcome this lack of stability and facilitate the handling of these colloidal systems, stabilization of insulin in presence of hydrophobic components of a microemulsion appears as the most promising strategy. The present paper reports the use of egg yolk for stabilization of insulin in self microemulsifying dispersions. Insulin loaded egg yolk self microemulsifying dispersions were prepared by lyophilization followed by dispersion into self microemulsifying vehicle. The physicochemical characterization of selfmicroemulsifying dispersions includes such as insulin encapsulation efficiency, in vitro stability of insulin in presence of proteolytic enzymes and in vitro release. The biological activity of insulin from the dispersion was estimated by enzyme-linked immunosorbant assay and in vivo using Wistar diabetic rats. The particle size ranged 1.023±0.316 µm in diameter and insulin encapsulation efficiency was 98.2±0.9 %. Insulin hydrophobic self microemulsifying dispersions suppressed insulin release in pH 7.4 phosphate buffer and shown to protect insulin from enzymatic degradation in vitro in presence of chymotripsin. Egg yolk encapsulated insulin was bioactive, demonstrated through both in vivo and in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...