Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(4): 1479-1494, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34967275

RESUMO

SaCyp, a staphylococcal cyclophilin involved in both protein folding and pathogenesis, has a Ser residue at position 106 and a Trp residue at position 136. While Ser 106 of SaCyp aligned with a cyclosporin A (CsA) binding Ala residue, its Trp 136 aligned with a Trp or a Phe residue of most other cyclophilins. To demonstrate the exact roles of Ser 106 and Trp 136 in SaCyp, we have elaborately studied rCyp[S106A] and rCyp[W136A], two-point mutants of a recombinant SaCyp (rCyp) harboring an Ala substitution at positions 106 and 136, respectively. Of the mutants, rCyp[W136A] showed the rCyp-like CsA binding affinity and peptidyl-prolyl cis-trans isomerase (PPIase) activity. Conversely, the PPIase activity, CsA binding affinity, stability, tertiary structure, surface hydrophobicity, and Trp accessibility of rCyp[S106A] notably differed from those of rCyp. The computational experiments also reveal that the structure, dimension, and fluctuation of SaCyp are not identical to those of SaCyp[S106A]. Furthermore, Ser at position 106 of SaCyp, compared to Ala at the same position, formed a higher number of non-covalent bonds with CsA. Collectively, Ser 106 is an indispensable residue for SaCyp that keeps its tertiary structure, function, and stability intact.Communicated by Ramaswamy H. Sarma.


Assuntos
Ciclofilinas , Staphylococcus aureus , Ciclofilinas/genética , Ciclofilinas/química , Ciclofilinas/metabolismo , Staphylococcus aureus/genética , Peptidilprolil Isomerase/metabolismo , Dobramento de Proteína , Ciclosporina
2.
J Biomol Struct Dyn ; 40(11): 4972-4986, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33356973

RESUMO

RsbW, σB, and RsbV, encoded by Staphylococcus aureus and related bacteria, act as an anti-sigma factor, an sigma factor, and an anti-anti-sigma factor, respectively. The interaction between RsbW and σB blocks the transcription initiation activity of the latter protein. RsbW also functions as a serine kinase and phosphorylates RsbV in the presence of ATP. Our modeling study indicates that the RsbW-RsbV complex is stabilized by twenty-four intermolecular non-covalent bonds. Of the bond-forming RsbW residues, Arg 23, and Glu 49 are conserved residues. To understand the roles of Arg 23 in RsbW, rRsbW[R23A], a recombinant S. aureus RsbW (rRsbW) harboring Arg to Ala change at position 23, was investigated using various probes. The results reveal that rRsbW[R23A], like rRsbW, exists as the dimers in the aqueous solution. However, rRsbW[R23A], unlike rRsbW, neither interacted with a chimeric RsbV (rRsbV) nor formed the phosphorylated rRsbV in the presence of ATP. Furthermore, the tertiary structure and hydrophobic surface area of rRsbW[R23A] matched little with those of rRsbW. Conversely, both rRsbW[R23A] and rRsbW showed interaction with a recombinant σB (rσB). rRsbW and rRsbW[R23A] were also unfolded via the formation of at least one intermediate in the presence of urea. However, the thermodynamic stability of rRsbW significantly differed from that of rRsbW[R23A]. Our molecular dynamics (MD) simulation study also reveals the substantial change of structure, dimension, and stability of RsbW due to the above mutation. The ways side chain of critical Arg 23 contributes to maintaining the tertiary structure, and stability of RsbW was elaborately discussed.Communicated by Ramaswamy H. Sarma.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fator sigma , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Fibrinogênio/genética , Fator sigma/genética , Staphylococcus aureus/genética
3.
J Biomol Struct Dyn ; 40(19): 9126-9143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33977860

RESUMO

CapF, a capsule-producing enzyme expressed by Staphylococcus aureus, binds NADPH and exists as a dimer in the aqueous solution. Many other capsule-producing virulent bacteria also express CapF orthologs. To understand the folding-unfolding mechanism of S. aureus CapF, herein a recombinant CapF (rCapF) was individually investigated using urea and guanidine hydrochloride (GdnCl). Unfolding of rCapF by both the denaturants was reversible but proceeded via the synthesis of a different number of intermediates. While two dimeric intermediates (rCapF4 and rCapF5) were formed at 0.5 M and 1.5 M GdnCl, three dimeric intermediates (rCapF1, rCapF2, and rCapF3) were produced at 1 M, 2 M, and 3 M urea, respectively. rCapF5 showed 3.6 fold less NADPH binding activity, whereas other intermediates retained full NADPH binding activity. Compared to rCapF, all of the intermediates (except rCapF3) had a compressed shape. Conversely, rCapF3 possessed a native protein-like shape. The maximum shape loss was in rCapF4 though its secondary structure remained unperturbed. Additionally, the tertiary structure and hydrophobic surface area of the intermediates neither matched with each other nor with those of the native rCapF. Of the four Trp residues in rCapF, one or more Trp residues in the intermediates may have higher solvent accessibility. Using sequence alignment and a tertiary structural model of CapF, we have demonstrated that the region around Trp 137 of CapF may be most sensitive to unfolding, whereas the NADPH binding motif carrying region at the N-terminal end of this protein may be resistant to unfolding, particularly at the low denaturant concentrations.Communicated by Ramaswamy H. Sarma.


Assuntos
Staphylococcus aureus , Ureia , Desnaturação Proteica , NADP/metabolismo , Guanidina/farmacologia , Ureia/farmacologia , Dobramento de Proteína , Cinética , Dicroísmo Circular
4.
Biochemistry ; 60(2): 135-151, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33406357

RESUMO

σB, an alternative sigma factor, is usually employed to tackle the general stress response in Staphylococcus aureus and other Gram-positive bacteria. This protein, involved in S. aureus-mediated pathogenesis, is typically blocked by RsbW, an antisigma factor having serine kinase activity. σB, a σ70-like sigma factor, harbors three conserved domains designated σB2, σB3, and σB4. To better understand the interaction between RsbW and σB or its domains, we have studied their recombinant forms, rRsbW, rσB, rσB2, rσB3, and rσB4, using different probes. The results show that none of the rσB domains, unlike rσB, showed binding to a cognate DNA in the presence of a core RNA polymerase. However, both rσB2 and rσB3, like rσB, interacted with rRsbW, and the order of their rRsbW binding affinity looks like rσB > rσB3 > rσB2. Furthermore, the reaction between rRsbW and rσB or rσB3 was exothermic and occurred spontaneously. rRsbW and rσB3 also associate with each other at a stoichiometry of 2:1, and different types of noncovalent bonds might be responsible for their interaction. A structural model of the RsbW-σB3 complex that has supported our experimental results indicated the binding of rσB3 at the putative dimeric interface of RsbW. A genetic study shows that the tentative dimer-forming region of RsbW is crucial for preserving its rσB binding ability, serine kinase activity, and dimerization ability. Additionally, a urea-induced equilibrium unfolding study indicated a notable thermodynamic stabilization of σB3 in the presence of RsbW. Possible implications of the stabilization data in drug discovery were discussed at length.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Domínios e Motivos de Interação entre Proteínas , Fator sigma/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/química , Proteínas de Transporte/química , RNA Polimerases Dirigidas por DNA/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Fator sigma/química
5.
J Biomol Struct Dyn ; 39(17): 6539-6552, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32755297

RESUMO

Staphylococcus aureus and many related bacteria encode both anti-sigma factor RsbW and anti-anti-sigma factor RsbV to control stress response by σB, an alternative sigma factor. Our structural and thermodynamic studies of a recombinant S. aureus RsbV (rRsbV) show that the monomeric protein contains five α-helices and a mostly parallel but mixed ß-sheet composed of five ß-strands, and interacts with a chimeric S. aureus RsbW (rRsbW) in vitro. In addition, rRsbV binds rRsbW with a Kd of 0.058 µM using spectroscopy and 0.008 µM using calorimetry at 25 °C. From a gel-shift assay, the affinity of rRsbV to rRsbW was found to be higher than its affinity with a recombinant S. aureus σB (rσB). Moreover, the heat generated from the spontaneous rRsbV - rRsbW interaction changed in a compensatory manner with entropy in the 20°-35 °C range. The association between rRsbV and rRsbW yielded a negative heat capacity change, suggesting that both hydrogen bonds and hydrophobic interactions participate in the formation of the rRsbV-rRsbW complex. Computational analyses of a homology-based RsbV-RsbW model has mostly supported the formation of a 2: 2 complex verified by gel filtration chromatography, the experimental ΔG and the existence of these non-covalent bonds. Our unfolding experiments show that the thermodynamic stability of rRsbV is significantly increased in the presence of rRsbW. Thus, these studies have provided valuable insights into the structure, stability, and the anti-sigma-binding thermodynamics of an anti-anti-sigma factor.Communicated by Ramaswamy H. Sarma.


Assuntos
Fator sigma , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Fator sigma/metabolismo , Termodinâmica
6.
Int J Biol Macromol ; 151: 1287-1298, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31751734

RESUMO

SaCyp, a cyclophilin having 197 amino acid residues, acts both as a protein-folding catalyst and a virulence factor in Staphylococcus aureus. Interestingly, a region, homologous to the SaCyp region carrying 121-148 amino acid residues, is present in many putative cyclophilins but absent in well-studied cyclophilins. To determine the exact roles of this unusual region in SaCyp and related proteins, we have investigated a deletion mutant (rCypΔ) of a recombinant SaCyp (rCyp) using various probes. The data reveal that rCypΔ has significantly less catalytic activity and possesses altered structure and hydrophobic surface compared to rCyp. Conversely, the deletion substantially increased inhibitor binding affinity and altered the shape of rCyp. However, both proteins were unfolded by a non-two-state mechanism in the presence of urea. Additionally, the stability of rCyp was significantly reduced due to the deletion of the residues 121-148. Our MD simulation study also indicated the considerable alteration in structure, shape, and fluctuations of SaCyp due to the removal of the region carrying 121-148 residues. Hence, the atypical region located in SaCyp might be vital for maintaining its unique structure, function, stability, and shape.


Assuntos
Ciclofilinas/química , Ciclofilinas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Catálise , Ciclofilinas/genética , Ciclofilinas/isolamento & purificação , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação
7.
Int J Biol Macromol ; 124: 903-914, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517842

RESUMO

The lysogenic growth of phage ф11 in Staphylococcus aureus is controlled by a repressor (CI) that harbors an N-terminal domain (NTD), and a C-terminal domain (CTD). Previously, NTD, like CI, showed DNA binding activity and dimerized in the aqueous solution. To precisely understand the folding mechanism, function, and the stability of CI, NTD, and CTD, we have investigated their recombinant forms, rCI, rNTD, and rCTD, using various probes. The data reveal that rCTD, like rCI and rNTD, is a well-structured protein and produces dimers in the aqueous environment. However, the stability order of the dimers appears to be rCI > rCTD > rNTD. Interestingly, the stability of rNTD or rCTD looks slightly higher than that of rCI. The urea-induced equilibrium unfolding of these proteins proceeded via the production of two intermediates. The structure, surface hydrophobicity, and the dimeric status of one intermediate mostly differed from those of another intermediate or the native protein. Our MD simulation study on the representative NTD shows the substantial change in its structure and stability at the urea concentrations, which formed rNTD intermediates. Collectively, the computational data have supported the experimental data and indicated that the CI and its domains are folded by a similar multiphasic pathway.


Assuntos
Proteínas de Bactérias/química , Proteínas Repressoras/química , Fagos de Staphylococcus/genética , Proteínas Virais/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lisogenia , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fagos de Staphylococcus/metabolismo , Staphylococcus aureus/virologia , Especificidade por Substrato , Termodinâmica , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
PLoS One ; 13(4): e0195416, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621342

RESUMO

RsbW, an anti-sigma factor possessing kinase activity, is expressed by many Gram-positive bacteria including Staphylococcus aureus. To obtain clues about the domain structure and the folding-unfolding mechanism of RsbW, we have elaborately studied rRsbW, a recombinant S. aureus RsbW. Sequence analysis of the protein fragments, generated by the limited proteolysis of rRsbW, has proposed it to be a single-domain protein. The unfolding of rRsbW in the presence of GdnCl or urea was completely reversible in nature and occurred through the formation of at least two intermediates. The structure, shape, and the surface hydrophobicity of no intermediate completely matches with those of other intermediates or the native rRsbW. Interestingly, one of the intermediates, formed in the presence of less GdnCl concentrations, has a molten globule-like structure. Conversely, all of the intermediates, like native rRsbW, exist as dimers in aqueous solution. The putative molten globule and the urea-generated intermediates also have retained some kinase activity. Additionally, the putative ATP binding site/catalytic site of rRsbW shows higher denaturant sensitivity than the tentative dimerization region of this enzyme.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Domínio Catalítico/fisiologia , Fator sigma/antagonistas & inibidores , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Transporte/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Análise de Sequência de DNA
9.
Int J Biol Macromol ; 113: 1221-1232, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29545063

RESUMO

SarA, a winged-helix DNA binding protein, is a global virulence regulator in Staphylococcus aureus. The putative DNA binding region of SarA is located between amino acid residues Leu 53 and Gln 97. Previous studies have demonstrated that residues at positions 84, 88, 89, and 90 are critical for its function. To precisely understand the roles of the DNA binding residues, we have investigated nine mutants of a recombinant SarA (rSarA) along with the rSarA mutants carrying mutations at the above four positions. Of the thirteen mutants, eleven mutants show weaker DNA binding activity in vitro compared to rSarA. As noted earlier, the DNA binding affinity of rSarA was maximally affected due to the mutation at position 84 or 90. Each of the functionally-defective mutants also possesses an altered structure and stability. Additionally, the mutations at positions 84 and 90 have severely affected the formation of hydrogen (H) bonds at the interface between SarA and the cognate DNA. The mutation at position 64 also has perturbed the generation of some interface H-bonds. Therefore, the disruption of H-bonds in the protein-DNA interface and the structural alteration in the protein may be responsible for the reduced DNA binding activity of the mutants.


Assuntos
Alanina , Substituição de Aminoácidos , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Mutação , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Transativadores/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteólise , Staphylococcus aureus/genética , Relação Estrutura-Atividade , Transativadores/química , Transativadores/genética , Virulência
10.
Protein J ; 37(2): 103-112, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29464485

RESUMO

SarA, a pleiotropic transcription regulator, is encoded by Staphylococcus aureus, a pathogenic bacterium. The expression of many virulence and non-virulence genes in S. aureus is modulated by this regulator. Structural studies have shown it to be a winged-helix DNA-binding protein carrying two monomers. Each SarA monomer is composed of five α-helices (α1-α5), three ß-strands (ß1-ß3) and multiple loops. The putative DNA binding region of SarA is constituted with α3, α4, ß2, and ß3, whereas, its dimerization seems to occur using α1, α2, and α5. Interestingly, many SarA-like proteins are dimeric and use three or more helices for their dimerization. To clearly understand the roles of helix α1 in the dimerization, we have constructed and purified a SarA mutant (Δα1) that lacks helix α1. Our in-depth studies with Δα1 indicate that the helix α1 is critical for preserving the structure, DNA binding activity and thermodynamic stability of SarA. However, the helix has little affected its dimerization ability. Possible reasons for such anomaly have been discussed at length.


Assuntos
Proteínas de Bactérias , Conformação Proteica em alfa-Hélice/genética , Staphylococcus aureus , Virulência/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Dimerização , Deleção de Sequência/genética , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade
11.
Bioinformation ; 13(3): 78-85, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28584448

RESUMO

Cyclophilins, a class of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes, are inhibited by cyclosporin A (CsA), an immunosuppressive drug. Staphylococcus aureus Newman, a pathogenic bacterium, carries a gene for encoding a putative cyclophilin (SaCyp). SaCyp shows significant homology with other cyclophilins at the sequence level. A three-dimensional model structure of SaCyp harbors a binding site for CsA. To verify whether SaCyp possesses both the PPIase activity and the CsA binding ability, we have purified and investigated a recombinant SaCyp (rCyp) using various in vitro tools. Our RNase T1 refolding assay indicates that rCyp has a substantial extent of PPIase activity. rCyp that exists as a monomer in the aqueous solution is truly a cyclophilin as its catalytic activity specifically shows sensitivity to CsA. rCyp appears to bind CsA with a reasonably high affinity. Additional investigations reveal that binding of CsA to rCyp alters its structure and shape to some extent. Both rCyp and rCyp-CsA are unfolded via the formation of at least one intermediate in the presence of guanidine hydrochloride. Unfolding study also indicates that there is substantial extent of thermodynamic stabilization of rCyp in the presence of CsA as well. The data suggest that rCyp may be exploited to screen the new antimicrobial agents in the future.

12.
J Phys Condens Matter ; 25(29): 295601, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23803347

RESUMO

We present a numerical study of a continuum plasticity field coupled to a Ginzburg-Landau model for superfluidity. The results suggest that a supersolid fraction may appear as a long-lived transient during the time evolution of the plasticity field at higher temperatures where both dislocation climb and glide are allowed. Supersolidity, however, vanishes with annealing. As the temperature is decreased, dislocation climb is arrested and any residual supersolidity due to incomplete annealing remains frozen. Our results may provide a resolution of many perplexing issues concerning a variety of experiments on bulk solid (4)He.


Assuntos
Elétrons , Hélio/química , Modelos Estatísticos , Simulação de Dinâmica Molecular , Computação Matemática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...