Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-14, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902555

RESUMO

FKBP22, an Escherichia coli-made peptidyl-prolyl cis-trans isomerase, has shown considerable homology with Mip-like virulence factors. While the C-terminal domain of this enzyme is used for executing catalytic function and binding inhibitor, the N-terminal domain is employed for its dimerization. To precisely determine the underlying factors of FKBP22 dimerization, its structural model, developed using a suitable template, was carefully inspected. The data show that the dimeric FKBP22, like dimeric Mip proteins, has a V-like shape. Further, it dimerizes using 40 amino acid residues including Ile 9, Ile 17, Ile 42, and Ile 65. All of the above Ile residues except Ile 9 are partly conserved in the Mip-like proteins. To confirm the roles of the partly conserved Ile residues, three FKBP22 mutants, constructed by substituting them with an Ala residue, were studied as well. The results together indicate that Ile 65 has little role in maintaining the dimeric state or enzymatic activity of FKBP22. Conversely, both Ile 17 and Ile 42 are essential for preserving the structure, enzymatic activity, and dimerization ability of FKBP22. Ile 42 in particular looks more essential to FKBP22. However, none of these two Ile residues is required for binding the cognate inhibitor. Additional computational studies also indicated the change of V-shape and the dimeric state of FKBP22 due to the Ala substitution at position 42. The ways Ile 17 and Ile 42 protect the structure, function, and dimerization of FKBP22 have been discussed at length.Communicated by Ramaswamy H. Sarma.

2.
J Biochem ; 173(6): 471-486, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-36748395

RESUMO

CapF, a staphylococcal capsule-producing enzyme, binds Zn2+ ion and NADPH using its C-terminal domain (CTD) and N-terminal domain (NTD), respectively. To elucidate the roles of cofactors and domains, we have systematically investigated the related recombinant proteins, rCapF, rCTD, recombinant NTD (rNTD) and the Zn2+-free rCapF/rCTD, Apo-rCapF/Apo-rCTD. The results show that the secondary structure, tertiary structure, shape and surface hydrophobicity of Apo-rCapF and Apo-rCTD are different from those of rCapF and rCTD. The removal of Zn2+ made rCapF thermo-sensitive, whereas both rCTD and Apo-rCTD are thermo-resistant proteins. Further, Apo-rCapF and rCapF existed as the dimers, whereas rCTD and Apo-rCTD formed a mixture of dimers and tetramers in the aqueous solution. Zn2+ maintained the structure of NTD as well. The NADPH binding activity and Cys accessibility of rNTD, rCapF and Apo-rCapF were significantly different from each other. The binding of NADPH to the above three proteins freely occurred, liberated heat at 25°C and increased their diameters. In addition, the structure, stability, shape and oligomerization ability of rNTD, rCTD and rCapF little resembled each other. Collectively, the domains and cofactors of CapF contribute to preserving its conformation, stability, shape and dimerization ability.


Assuntos
Dimerização , NADP/metabolismo , Proteínas Recombinantes/metabolismo
3.
J Biomol Struct Dyn ; 41(4): 1479-1494, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34967275

RESUMO

SaCyp, a staphylococcal cyclophilin involved in both protein folding and pathogenesis, has a Ser residue at position 106 and a Trp residue at position 136. While Ser 106 of SaCyp aligned with a cyclosporin A (CsA) binding Ala residue, its Trp 136 aligned with a Trp or a Phe residue of most other cyclophilins. To demonstrate the exact roles of Ser 106 and Trp 136 in SaCyp, we have elaborately studied rCyp[S106A] and rCyp[W136A], two-point mutants of a recombinant SaCyp (rCyp) harboring an Ala substitution at positions 106 and 136, respectively. Of the mutants, rCyp[W136A] showed the rCyp-like CsA binding affinity and peptidyl-prolyl cis-trans isomerase (PPIase) activity. Conversely, the PPIase activity, CsA binding affinity, stability, tertiary structure, surface hydrophobicity, and Trp accessibility of rCyp[S106A] notably differed from those of rCyp. The computational experiments also reveal that the structure, dimension, and fluctuation of SaCyp are not identical to those of SaCyp[S106A]. Furthermore, Ser at position 106 of SaCyp, compared to Ala at the same position, formed a higher number of non-covalent bonds with CsA. Collectively, Ser 106 is an indispensable residue for SaCyp that keeps its tertiary structure, function, and stability intact.Communicated by Ramaswamy H. Sarma.


Assuntos
Ciclofilinas , Staphylococcus aureus , Ciclofilinas/genética , Ciclofilinas/química , Ciclofilinas/metabolismo , Staphylococcus aureus/genética , Peptidilprolil Isomerase/metabolismo , Dobramento de Proteína , Ciclosporina
4.
J Biomol Struct Dyn ; 40(11): 4972-4986, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33356973

RESUMO

RsbW, σB, and RsbV, encoded by Staphylococcus aureus and related bacteria, act as an anti-sigma factor, an sigma factor, and an anti-anti-sigma factor, respectively. The interaction between RsbW and σB blocks the transcription initiation activity of the latter protein. RsbW also functions as a serine kinase and phosphorylates RsbV in the presence of ATP. Our modeling study indicates that the RsbW-RsbV complex is stabilized by twenty-four intermolecular non-covalent bonds. Of the bond-forming RsbW residues, Arg 23, and Glu 49 are conserved residues. To understand the roles of Arg 23 in RsbW, rRsbW[R23A], a recombinant S. aureus RsbW (rRsbW) harboring Arg to Ala change at position 23, was investigated using various probes. The results reveal that rRsbW[R23A], like rRsbW, exists as the dimers in the aqueous solution. However, rRsbW[R23A], unlike rRsbW, neither interacted with a chimeric RsbV (rRsbV) nor formed the phosphorylated rRsbV in the presence of ATP. Furthermore, the tertiary structure and hydrophobic surface area of rRsbW[R23A] matched little with those of rRsbW. Conversely, both rRsbW[R23A] and rRsbW showed interaction with a recombinant σB (rσB). rRsbW and rRsbW[R23A] were also unfolded via the formation of at least one intermediate in the presence of urea. However, the thermodynamic stability of rRsbW significantly differed from that of rRsbW[R23A]. Our molecular dynamics (MD) simulation study also reveals the substantial change of structure, dimension, and stability of RsbW due to the above mutation. The ways side chain of critical Arg 23 contributes to maintaining the tertiary structure, and stability of RsbW was elaborately discussed.Communicated by Ramaswamy H. Sarma.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fator sigma , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Fibrinogênio/genética , Fator sigma/genética , Staphylococcus aureus/genética
5.
J Biomol Struct Dyn ; 40(19): 9126-9143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33977860

RESUMO

CapF, a capsule-producing enzyme expressed by Staphylococcus aureus, binds NADPH and exists as a dimer in the aqueous solution. Many other capsule-producing virulent bacteria also express CapF orthologs. To understand the folding-unfolding mechanism of S. aureus CapF, herein a recombinant CapF (rCapF) was individually investigated using urea and guanidine hydrochloride (GdnCl). Unfolding of rCapF by both the denaturants was reversible but proceeded via the synthesis of a different number of intermediates. While two dimeric intermediates (rCapF4 and rCapF5) were formed at 0.5 M and 1.5 M GdnCl, three dimeric intermediates (rCapF1, rCapF2, and rCapF3) were produced at 1 M, 2 M, and 3 M urea, respectively. rCapF5 showed 3.6 fold less NADPH binding activity, whereas other intermediates retained full NADPH binding activity. Compared to rCapF, all of the intermediates (except rCapF3) had a compressed shape. Conversely, rCapF3 possessed a native protein-like shape. The maximum shape loss was in rCapF4 though its secondary structure remained unperturbed. Additionally, the tertiary structure and hydrophobic surface area of the intermediates neither matched with each other nor with those of the native rCapF. Of the four Trp residues in rCapF, one or more Trp residues in the intermediates may have higher solvent accessibility. Using sequence alignment and a tertiary structural model of CapF, we have demonstrated that the region around Trp 137 of CapF may be most sensitive to unfolding, whereas the NADPH binding motif carrying region at the N-terminal end of this protein may be resistant to unfolding, particularly at the low denaturant concentrations.Communicated by Ramaswamy H. Sarma.


Assuntos
Staphylococcus aureus , Ureia , Desnaturação Proteica , NADP/metabolismo , Guanidina/farmacologia , Ureia/farmacologia , Dobramento de Proteína , Cinética , Dicroísmo Circular
7.
Biochemistry ; 60(2): 135-151, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33406357

RESUMO

σB, an alternative sigma factor, is usually employed to tackle the general stress response in Staphylococcus aureus and other Gram-positive bacteria. This protein, involved in S. aureus-mediated pathogenesis, is typically blocked by RsbW, an antisigma factor having serine kinase activity. σB, a σ70-like sigma factor, harbors three conserved domains designated σB2, σB3, and σB4. To better understand the interaction between RsbW and σB or its domains, we have studied their recombinant forms, rRsbW, rσB, rσB2, rσB3, and rσB4, using different probes. The results show that none of the rσB domains, unlike rσB, showed binding to a cognate DNA in the presence of a core RNA polymerase. However, both rσB2 and rσB3, like rσB, interacted with rRsbW, and the order of their rRsbW binding affinity looks like rσB > rσB3 > rσB2. Furthermore, the reaction between rRsbW and rσB or rσB3 was exothermic and occurred spontaneously. rRsbW and rσB3 also associate with each other at a stoichiometry of 2:1, and different types of noncovalent bonds might be responsible for their interaction. A structural model of the RsbW-σB3 complex that has supported our experimental results indicated the binding of rσB3 at the putative dimeric interface of RsbW. A genetic study shows that the tentative dimer-forming region of RsbW is crucial for preserving its rσB binding ability, serine kinase activity, and dimerization ability. Additionally, a urea-induced equilibrium unfolding study indicated a notable thermodynamic stabilization of σB3 in the presence of RsbW. Possible implications of the stabilization data in drug discovery were discussed at length.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Domínios e Motivos de Interação entre Proteínas , Fator sigma/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/química , Proteínas de Transporte/química , RNA Polimerases Dirigidas por DNA/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Fator sigma/química
8.
J Biomol Struct Dyn ; 39(17): 6539-6552, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32755297

RESUMO

Staphylococcus aureus and many related bacteria encode both anti-sigma factor RsbW and anti-anti-sigma factor RsbV to control stress response by σB, an alternative sigma factor. Our structural and thermodynamic studies of a recombinant S. aureus RsbV (rRsbV) show that the monomeric protein contains five α-helices and a mostly parallel but mixed ß-sheet composed of five ß-strands, and interacts with a chimeric S. aureus RsbW (rRsbW) in vitro. In addition, rRsbV binds rRsbW with a Kd of 0.058 µM using spectroscopy and 0.008 µM using calorimetry at 25 °C. From a gel-shift assay, the affinity of rRsbV to rRsbW was found to be higher than its affinity with a recombinant S. aureus σB (rσB). Moreover, the heat generated from the spontaneous rRsbV - rRsbW interaction changed in a compensatory manner with entropy in the 20°-35 °C range. The association between rRsbV and rRsbW yielded a negative heat capacity change, suggesting that both hydrogen bonds and hydrophobic interactions participate in the formation of the rRsbV-rRsbW complex. Computational analyses of a homology-based RsbV-RsbW model has mostly supported the formation of a 2: 2 complex verified by gel filtration chromatography, the experimental ΔG and the existence of these non-covalent bonds. Our unfolding experiments show that the thermodynamic stability of rRsbV is significantly increased in the presence of rRsbW. Thus, these studies have provided valuable insights into the structure, stability, and the anti-sigma-binding thermodynamics of an anti-anti-sigma factor.Communicated by Ramaswamy H. Sarma.


Assuntos
Fator sigma , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Fator sigma/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...