Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(10): 101003, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518339

RESUMO

We use multimessenger observations of the neutron star merger event GW170817 to derive new constraints on axionlike particles (ALPs) coupling to photons. ALPs are produced via Primakoff and photon coalescence processes in the merger, escape the remnant, and decay back into two photons, giving rise to a photon signal approximately along the line of sight to the merger. We analyze the spectral and temporal information of the ALP-induced photon signal and use the Fermi Large Area Telescope (Fermi-LAT) observations of GW170817 to derive our new ALP constraints. We also show the improved prospects with future MeV γ-ray missions, taking the spectral and temporal coverage of Fermi-LAT as an example.

2.
Gen Relativ Gravit ; 54(12): 156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465478

RESUMO

Detection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal-including inflation, phase transitions, topological defects, as well as primordial black holes-and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe.

3.
Phys Rev Lett ; 124(21): 211804, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530700

RESUMO

Searches for pseudoscalar axionlike-particles (ALPs) typically rely on their decay in beam dumps or their conversion into photons in haloscopes and helioscopes. We point out a new experimental direction for ALP probes via their production by the intense gamma ray flux available from megawatt-scale nuclear reactors at neutrino experiments through Primakoff-like or Compton-like channels. Low-threshold detectors in close proximity to the core will have visibility to ALP decays and inverse Primakoff and Compton scattering, providing sensitivity to the ALP-photon and ALP-electron couplings. We find that the sensitivity to these couplings at the ongoing MINER and various other reactor based neutrino experiments, e.g., CONNIE, CONUS, ν-cleus, etc., exceeds existing limits set by laboratory experiments and, for the ALP-electron coupling, we forecast the world's best laboratory-based constraints over a large portion of the sub-MeV ALP mass range.

4.
Phys Rev Lett ; 111(5): 051302, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952383

RESUMO

We discuss a supersymmetric model for cogenesis of dark and baryonic matter where the dark matter (DM) has mass in the 8-10 GeV range as indicated by several direct detection searches, including most recently the CDMS experiment with the desired cross section. The DM candidate is a real scalar field. Two key distinguishing features of the model are the following: (i) in contrast with the conventional weakly interacting massive particle dark matter scenarios where thermal freeze-out is responsible for the observed relic density, our model uses nonthermal production of dark matter after reheating of the Universe caused by moduli decay at temperatures below the QCD phase transition, a feature which alleviates the relic overabundance problem caused by small annihilation cross section of light DM particles and (ii) baryogenesis occurs also at similar low temperatures from the decay of TeV scale mediator particles arising from moduli decay. A possible test of this model is the existence of colored particles with TeV masses accessible at the LHC.

5.
Phys Rev Lett ; 111(6): 061801, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23971558

RESUMO

Vector boson fusion processes at the Large Hadron Collider (LHC) provide a unique opportunity to search for new physics with electroweak couplings. A feasibility study for the search of supersymmetric dark matter in the final state of two vector boson fusion jets and large missing transverse energy is presented at 14 TeV. Prospects for determining the dark matter relic density are studied for the cases of wino and bino-Higgsino dark matter. The LHC could probe wino dark matter with mass up to approximately 600 GeV with a luminosity of 1000 fb(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...