Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826200

RESUMO

Cerebellar patients exhibit a broad range of impairments when performing voluntary movements. However, the sequence of events leading to these deficits and the distinction between primary and compensatory processes remain unclear. We addressed this question by reversibly blocking cerebellar outflow in monkeys performing a planar reaching task. We found that the reduced hand velocity observed under cerebellar block is driven by a combination of a general decrease in muscle torque and a spatially tuned reduction in velocity, particularly pronounced in movements involving inter-joint interactions. The time course of these two processes was examined using repeated movements to the same target under cerebellar block. We found that the reduced velocity was driven by an acute onset of weakness superimposed on a gradually emergent strategy aimed to minimize passive inter-joint interactions. Finally, although the reduced velocity affected movements to all targets, it could not explain the enhanced motor noise observed under cerebellar block, which manifested as decomposed and variable trajectories. Our results suggest that cerebellar deficits lead to motor impairments through a loss of muscle strength and altered motor control strategy to compensate for the impaired control of limb dynamics. However, the loss of feedforward control also leads to increased motor noise, which cannot be strategically eliminated. Significance Statement: Our study examined the impact of cerebellar dysfunction on motor control by reversibly blocking the cerebellar output in monkeys. Under cerebellar block, movements initially slowed due to acute-onset muscle weakness. Beyond this primary deficit, there was a secondary, seemingly strategic, slowing of movements aimed at mitigating inter-joint interactions associated with rapid, ballistic movements. Finally, during the cerebellar block we observed movement variability increased independently of the reduced velocity, likely reflecting errors in movement planning. Taken together, these findings highlight the role of cerebellar information in motor control and delineate the sequence of processes following cerebellar dysfunction that culminate in a broad range of motor impairments.

2.
Front Syst Neurosci ; 16: 999531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341477

RESUMO

One of the most common types of models that helps us to understand neuron behavior is based on the Hodgkin-Huxley ion channel formulation (HH model). A major challenge with inferring parameters in HH models is non-uniqueness: many different sets of ion channel parameter values produce similar outputs for the same input stimulus. Such phenomena result in an objective function that exhibits multiple modes (i.e., multiple local minima). This non-uniqueness of local optimality poses challenges for parameter estimation with many algorithmic optimization techniques. HH models additionally have severe non-linearities resulting in further challenges for inferring parameters in an algorithmic fashion. To address these challenges with a tractable method in high-dimensional parameter spaces, we propose using a particular Markov chain Monte Carlo (MCMC) algorithm, which has the advantage of inferring parameters in a Bayesian framework. The Bayesian approach is designed to be suitable for multimodal solutions to inverse problems. We introduce and demonstrate the method using a three-channel HH model. We then focus on the inference of nine parameters in an eight-channel HH model, which we analyze in detail. We explore how the MCMC algorithm can uncover complex relationships between inferred parameters using five injected current levels. The MCMC method provides as a result a nine-dimensional posterior distribution, which we analyze visually with solution maps or landscapes of the possible parameter sets. The visualized solution maps show new complex structures of the multimodal posteriors, and they allow for selection of locally and globally optimal value sets, and they visually expose parameter sensitivities and regions of higher model robustness. We envision these solution maps as enabling experimentalists to improve the design of future experiments, increase scientific productivity and improve on model structure and ideation when the MCMC algorithm is applied to experimental data.

3.
Ann Biomed Eng ; 49(1): 432-440, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32705425

RESUMO

Both linear and nonlinear electromyographic (EMG) connectivity has been reported during the expression of stretch reflexes, though it is not clear whether they are generated by the same neural pathways. To answer this question, we aim to distinguish linear and nonlinear connectivity, as well as their delays in muscle responses, resulting from continuous elbow joint perturbations. We recorded EMG from Biceps Brachii muscle when eight able-bodied participants were performing a steady elbow flexion torque while simultaneously receiving a continuous position perturbation. Using a recently developed phase coupling metric, we estimated linear and nonlinear connectivity as well as their associated delays between Biceps EMG responses and perturbations. We found that the time delay for linear connectivity (24.5 ± 5.4 ms) is in the range of short-latency stretch reflex period (< 35 ms), while that for nonlinear connectivity (53.8 ± 3.2 ms) is in the range of long-latency stretch reflex period (40-70 ms). These results suggest that the estimated linear connectivity between EMG and perturbations is very likely generated by the mono-synaptic spinal stretch reflex loop, while the nonlinear connectivity may be associated with multi-synaptic supraspinal stretch reflex loops. As such, this study provides new evidence of the nature of neural connectivity related to the stretch reflex.


Assuntos
Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Reflexo de Estiramento/fisiologia , Idoso , Articulação do Cotovelo/fisiologia , Eletromiografia , Retroalimentação Sensorial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Robótica , Transmissão Sináptica , Torque
4.
J Theor Biol ; 509: 110509, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33022285

RESUMO

A major challenge in understanding spike-time dependent information encoding in the neural system is the non-linear firing response to inputs of the individual neurons. Hence, quantitative exploration of the putative mechanisms of this non-linear behavior is fundamental to formulating the theory of information transfer in the neural system. The objective of this simulation study was to evaluate and quantify the effect of slowly activating outward membrane current, on the non-linearity in the output of a one-compartment Hodgkin-Huxley styled neuron. To evaluate this effect, the peak conductance of the slow potassium channel (gK-slow) was varied from 0% to 200% of its normal value in steps of 33%. Both cross- and iso-frequency coupling between the input and the output of the simulated neuron was computed using a generalized coherence measure, i.e., n:m coherence. With increasing gK-slow, the amount of sub-harmonic cross-frequency coupling, where the output frequencies (1-8 Hz) are lower than the input frequencies (15-35 Hz), increased progressively whereas no change in iso-frequency coupling was observed. Power spectral and phase-space analysis of the neuronal membrane voltage vs. slow potassium channel activation variable showed that the interaction of the slow channel dynamics with the fast membrane voltage dynamics generates the observed sub-harmonic coupling. This study provides quantitative insights into the role of an important membrane mechanism i.e. the slowly activating outward current in generating non-linearities in the output of a neuron.


Assuntos
Neurônios , Canais de Potássio , Modelos Neurológicos
5.
IEEE Trans Neural Syst Rehabil Eng ; 28(6): 1436-1441, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32275603

RESUMO

Post-stroke flexion synergy limits arm/hand function and is also linked to hyperactive stretch reflexes or spasticity. It is implicated in the increased role of indirect motor pathways following damage to direct corticospinal projections. We hypothesized that this maladaptive neuroplasticity also affects stretch reflexes. Specifically, multi-synaptic interactions in indirect motor pathways may increase nonlinear neural connectivity and time lag between stretch and reflex muscle response. Continuous position perturbations were applied to the elbow joint when eleven participants with stroke generated two levels of shoulder abduction (SABD) torques with their paretic arm to induce synergy-related spasticity. Likewise, the perturbations were applied to eleven control subjects while performing SABD and elbow flexion levels matching the synergy torques in stroke. We quantified linear and non-linear connectivity and the corresponding time lags between perturbations and muscle activity. Enhanced nonlinear connectivity with a prolonged time lag was found in stroke as compared to controls. Non-linear connectivity and time lag also increased with the expression of the flexion synergy, as induced by greater SABD load levels, in stroke. This study provides new evidence of changes in neural connectivity and long-latency time lag in the stretch reflex response post-stroke. The results suggest the contribution of indirect motor pathways to synergy-related spasticity.


Assuntos
Reflexo de Estiramento , Acidente Vascular Cerebral , Cotovelo , Eletromiografia , Humanos , Músculo Esquelético , Amplitude de Movimento Articular , Reflexo , Acidente Vascular Cerebral/complicações
6.
Biomed Eng Online ; 18(1): 90, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31455355

RESUMO

BACKGROUND: Stroke-related sensory and motor deficits often steal away the independent mobility and balance from stroke survivors. Often, this compels the stroke survivors to rely heavily on their non-paretic leg during weight shifting to execute activities of daily living (ADL), with reduced usage of the paretic leg. Increased reliance on non-paretic leg often leads to learned nonuse of the paretic leg. Therefore, it is necessary to measure the contribution of individual legs toward one's overall balance. In turn, techniques can be developed to condition the usage of both the legs during one's balance training, thereby encouraging the hemiplegic patients for increased use of their paretic leg. The aim of this study is to (1) develop a virtual reality (VR)-based balance training platform that can estimate the contribution of each leg during VR-based weight-shifting tasks in an individualized manner and (2) understand the implication of operant conditioning paradigm during balance training on the overall balance of hemiplegic stroke patients. RESULT: Twenty-nine hemiplegic patients participated in a single session of VR-based balance training. The participants maneuvered virtual objects in the virtual environment using two Wii Balance Boards that measured displacement in the center of pressure (CoP) due to each leg when one performed weight-shifting tasks. For operant conditioning, the weight distribution across both the legs was conditioned (during normal trial) to reward participants for increased usage of the paretic leg during the weight-shifting task. The participants were offered multiple levels of normal trials with intermediate catch trial (with equal weight distribution between both legs) in an individualized manner. The effect of operant conditioning during the normal trials was measured in the following catch trials. The participants showed significantly improved performance in the final catch trial compared to their initial catch trial task. Also, the enhancement in CoP displacement of the paretic leg was significant in the final catch trial compared to the initial catch trial. CONCLUSION: The developed system was able to encourage participants for improved usage of their paretic leg during weight-shifting tasks. Such an approach has the potential to address the issue of learned nonuse of the paretic leg in stroke patients.


Assuntos
Condicionamento Operante , Equilíbrio Postural/fisiologia , Realidade Virtual , Atividades Cotidianas , Adolescente , Adulto , Idoso , Feminino , Hemiplegia/fisiopatologia , Hemiplegia/psicologia , Hemiplegia/terapia , Humanos , Masculino , Pessoa de Meia-Idade
7.
Front Syst Neurosci ; 13: 86, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31992973

RESUMO

Coupling of neural oscillations is essential for the transmission of cortical motor commands to motoneuron pools through direct and indirect descending motor pathways. Most studies focus on iso-frequency coupling between brain and muscle activities, i.e., cortico-muscular coherence, which is thought to reflect motor command transmission in the mono-synaptic corticospinal pathway. Compared to this direct pathway, indirect corticobulbospinal motor pathways involve multiple intermediate synaptic connections via spinal interneurons. Neuronal processing of synaptic inputs can lead to modulation of inter-spike intervals which produces cross-frequency coupling. This theoretical study aims to evaluate the effect of the number of synaptic layers in descending pathways on the expression of cross-frequency coupling between supraspinal input and the cumulative output of the motoneuron pool using a computer simulation. We simulated descending pathways as various layers of interneurons with a terminal motoneuron pool using Hogdkin-Huxley styled neuron models. Both cross- and iso-frequency coupling between the supraspinal input and the motorneuron pool output were computed using a novel generalized coherence measure, i.e., n:m coherence. We found that the iso-frequency coupling is only dominant in the mono-synaptic corticospinal tract, while the cross-frequency coupling is dominant in multi-synaptic indirect motor pathways. Furthermore, simulations incorporating both mono-synaptic direct and multi-synaptic indirect descending pathways showed that increased reliance on a multi-synaptic indirect pathway over a mono-synaptic direct pathway enhances the dominance of cross-frequency coupling between the supraspinal input and the motorneuron pool output. These results provide the theoretical basis for future human subject study quantitatively assessing motor command transmission in indirect vs. direct pathways and its changes after neurological disorders such as unilateral brain injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...