Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transplant Proc ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972761

RESUMO

BACKGROUND: Kidney transplant recipients require potent immunosuppression and are predisposed to opportunistic infections, many of which have a viral etiology. Currently, viral assays detect and quantify single pathogens using PCR or qPCR. An unbiased sequencing method with comparable accuracy would allow simultaneous monitoring of multiple viral pathogens and nonpathogenic Anelloviridae. The quantification of donor-derived cell-free DNA (dd-cfDNA) is an established method for the detection of allograft rejection, and a single workflow combining dd-cfDNA quantification and viral detection represents an opportunity to improve patient monitoring and management. METHODS: Whole genome sequencing of cell-free DNA was performed using 1,980 plasma samples from 256 subjects enrolled in a multi-center study. Non-human sequences underwent reference-assisted assembly and taxonomic annotation of the viral DNA pathogens. RESULTS: Of the 1,980 samples tested, 1,453 (73.4%) had ≥1 viral detection(s), either a known viral pathogen or torque teno virus (TTV), with positivity rates generally declining 12-18 months post-transplant. Concordance of metagenomic NGS (mNGS) viral detection with qPCR detection was 97.7% (94.1% sensitivity, 98.2% specificity), and a linear relationship was demonstrated between mNGS viral quantitation and qPCR results. BK virus, cytomegalovirus, and Epstein-Barr virus were detected by sequencing up to 60 days prior to independently established clinical diagnoses. CONCLUSIONS: Whole-genome sequencing allows simultaneous quantification of dd-cfDNA as well as sensitive and early detection of viral infection through secondary analysis of the same sequencing results. In combination with dd-cfDNA, mNGS viral detection may provide additional pathogen surveillance results and serve as a useful biomarker for both over- and under-immunosuppression.

2.
Am J Transplant ; 22(2): 532-540, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34510731

RESUMO

Donor-derived cell-free DNA (dd-cfDNA) has been evaluated as a rejection marker in organ transplantation. This study sought to assess the utility of dd-cfDNA to diagnose graft injury in liver transplant recipients (LTR) and as a predictive biomarker prior to different causes of graft dysfunction. Plasma from single and multicenter LTR cohorts was analyzed for dd-cfDNA. Phenotypes of treated biopsy-proven acute rejection (AR, N = 57), normal function (TX, N = 94), and acute dysfunction no rejection (ADNR; N = 68) were divided into training and test sets. In the training set, dd-cfDNA was significantly different between AR versus TX (AUC 0.95, 5.3% cutoff) and AR versus ADNR (AUC 0.71, 20.4% cutoff). Using these cutoffs in the test set, the accuracy and NPV were 87% and 100% (AR vs. TX) and 66.7% and 87.8% (AR vs. ADNR). Blood samples collected serially from LTR demonstrated incremental elevations in dd-cfDNA prior to the onset of graft dysfunction (AR > ADNR), but not in TX. Dd-cfDNA also decreased following treatment of rejection. In conclusion, the serial elevation of dd-cfDNA identifies pre-clinical graft injury in the context of normal liver function tests and is greatest in rejection. This biomarker may help detect early signs of graft injury and rejection to inform LTR management strategies.


Assuntos
Ácidos Nucleicos Livres , Transplante de Rim , Transplante de Fígado , Biomarcadores , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/genética , Humanos , Transplante de Fígado/efeitos adversos , Doadores de Tecidos , Transplantados
3.
Clin J Am Soc Nephrol ; 16(10): 1539-1551, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34620649

RESUMO

BACKGROUND AND OBJECTIVES: Subclinical acute rejection is associated with poor outcomes in kidney transplant recipients. As an alternative to surveillance biopsies, noninvasive screening has been established with a blood gene expression profile. Donor-derived cellfree DNA (cfDNA) has been used to detect rejection in patients with allograft dysfunction but not tested extensively in stable patients. We hypothesized that we could complement noninvasive diagnostic performance for subclinical rejection by combining a donor-derived cfDNA and a gene expression profile assay. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We performed a post hoc analysis of simultaneous blood gene expression profile and donor-derived cfDNA assays in 428 samples paired with surveillance biopsies from 208 subjects enrolled in an observational clinical trial (Clinical Trials in Organ Transplantation-08). Assay results were analyzed as binary variables, and then, their continuous scores were combined using logistic regression. The performance of each assay alone and in combination was compared. RESULTS: For diagnosing subclinical rejection, the gene expression profile demonstrated a negative predictive value of 82%, a positive predictive value of 47%, a balanced accuracy of 64%, and an area under the receiver operating curve of 0.75. The donor-derived cfDNA assay showed similar negative predictive value (84%), positive predictive value (56%), balanced accuracy (68%), and area under the receiver operating curve (0.72). When both assays were negative, negative predictive value increased to 88%. When both assays were positive, positive predictive value increased to 81%. Combining assays using multivariable logistic regression, area under the receiver operating curve was 0.81, significantly higher than the gene expression profile (P<0.001) or donor-derived cfDNA alone (P=0.006). Notably, when cases were separated on the basis of rejection type, the gene expression profile was significantly better at detecting cellular rejection (area under the receiver operating curve, 0.80 versus 0.62; P=0.001), whereas the donor-derived cfDNA was significantly better at detecting antibody-mediated rejection (area under the receiver operating curve, 0.84 versus 0.71; P=0.003). CONCLUSIONS: A combination of blood-based biomarkers can improve detection and provide less invasive monitoring for subclinical rejection. In this study, the gene expression profile detected more cellular rejection, whereas donor-derived cfDNA detected more antibody-mediated rejection.


Assuntos
Ácidos Nucleicos Livres/sangue , DNA/sangue , Perfilação da Expressão Gênica , Rejeição de Enxerto/diagnóstico , Transplante de Rim/efeitos adversos , Doadores de Tecidos , Transcriptoma , Adulto , Doenças Assintomáticas , Biomarcadores/sangue , Biópsia , Ácidos Nucleicos Livres/genética , DNA/genética , Feminino , Rejeição de Enxerto/sangue , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Resultado do Tratamento , Estados Unidos , Adulto Jovem
4.
mBio ; 12(4): e0115321, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34340536

RESUMO

The common marmoset (Callithrix jacchus) is an omnivorous New World primate whose diet in the wild includes large amounts of fruit, seeds, flowers, and a variety of lizards and invertebrates. Marmosets also feed heavily on tree gums and exudates, and they have evolved unique morphological and anatomical characteristics to facilitate gum feeding (gummivory). In this study, we characterized the fecal microbiomes of adult and infant animals from a captive population of common marmosets at the Callitrichid Research Center at the University of Nebraska at Omaha under their normal dietary and environmental conditions. The microbiomes of adult animals were dominated by species of Bifidobacterium, Bacteroides, Prevotella, Phascolarctobacterium, Megamonas, and Megasphaera. Culturing and genomic analysis of the Bifidobacterium populations from adult animals identified four known marmoset-associated species (B. reuteri, B. aesculapii, B. myosotis, and B. hapali) and three unclassified taxa of Bifidobacterium that are phylogenetically distinct. Species-specific quantitative PCR (qPCR) confirmed that these same species of Bifidobacterium are abundant members of the microbiome throughout the lives of the animals. Genomic loci in each Bifidobacterium species encode enzymes to support growth and major marmoset milk oligosaccharides during breastfeeding; however, metabolic islands that can support growth on complex polysaccharide substrates in the diets of captive adults (pectin, xyloglucan, and xylan), including loci in B. aesculapii that can support its unique ability to grow on arabinogalactan-rich tree gums, were species-specific. IMPORTANCEBifidobacterium species are recognized as important, beneficial microbes in the human gut microbiome, and their ability colonize individuals at different stages of life is influenced by host, dietary, environmental, and ecological factors, which is poorly understood. The common marmoset is an emerging nonhuman primate model with a short maturation period, making this model amenable to study the microbiome throughout a life history. Features of the microbiome in captive marmosets are also shared with human gut microbiomes, including abundant populations of Bifidobacterium species. Our studies show that several species of Bifidobacterium are dominant members of the captive marmoset microbiome throughout their life history. Metabolic capacities in genomes of the marmoset Bifidobacterium species suggest species-specific adaptations to different components of the captive marmoset diet, including the unique capacity in B. aesculapii for degradation of gum arabic, suggesting that regular dietary exposure in captivity may be important for preserving gum-degrading species in the microbiome.


Assuntos
Adaptação Fisiológica/genética , Bifidobacterium/genética , Bifidobacterium/fisiologia , Callithrix/microbiologia , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Especificidade da Espécie , Animais , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Dieta , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Goma Arábica/metabolismo , Masculino , Filogenia
5.
Antiviral Res ; 193: 105139, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273445

RESUMO

Because ganciclovir resistance mutations in the cytomegalovirus UL97 gene most commonly occur at codons 460, 520 and 590-607, diagnostic genotyping for drug resistance has often omitted the analysis of codons below 440. However, the UL97 kinase inhibitor maribavir selects for distinctive resistance mutations at codons 409 and 411, and ganciclovir/maribavir resistance mutations have also been described in the ATP binding region starting at codon 335. Expanded genotypic testing of UL97 codons 335-440 in 1535 clinical specimens disclosed 10 uncharacterized sequence variants that were phenotyped for ganciclovir and maribavir susceptibility. Notable findings included low-grade ganciclovir resistance conferred by amino acid substitutions K359N and E362D, decreased maribavir susceptibility of L348V, and maribavir hypersensitivity of V345I and E362D. Recently published substitutions F342Y and K359E/Q were also confirmed. The data indicate that mutations in the UL97 ATP binding region may arise in clinical specimens to affect the interpretation of ganciclovir and maribavir resistance. This region should now be included in the standard diagnostic genotyping of UL97, especially with the introduction of maribavir into therapeutic use.


Assuntos
Benzimidazóis/farmacologia , Infecções por Citomegalovirus/tratamento farmacológico , Citomegalovirus/efeitos dos fármacos , Farmacorresistência Viral/genética , Ganciclovir/farmacologia , Ribonucleosídeos/farmacologia , Trifosfato de Adenosina , Substituição de Aminoácidos , Antivirais/farmacologia , Códon , Técnicas de Genotipagem , Humanos , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
6.
PLoS One ; 15(1): e0227006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978071

RESUMO

Diabetic foot ulcers (DFUs) lead to nearly 100,000 lower limb amputations annually in the United States. DFUs are colonized by complex microbial communities, and infection is one of the most common reasons for diabetes-related hospitalizations and amputations. In this study, we examined how DFU microbiomes respond to initial sharp debridement and offloading and how the initial composition associates with 4 week healing outcomes. We employed 16S rRNA next generation sequencing to perform microbial profiling on 50 samples collected from 10 patients with vascularized neuropathic DFUs. Debrided wound samples were obtained at initial visit and after one week from two DFU locations, wound bed and wound edge. Samples of the foot skin outside of the wounds were also collected for comparison. We showed that DFU wound beds are colonized by a greater number of distinct bacterial phylotypes compared to the wound edge or skin outside the wound. However, no significant microbiome diversity changes occurred at the wound sites after one week of standard care. Finally, increased initial abundance of Gram-positive anaerobic cocci (GPAC), especially Peptoniphilus (p < 0.05; n = 5 subjects), was associated with impaired healing; thus, GPAC's abundance could be a predictor of the wound-healing outcome.


Assuntos
Desbridamento/métodos , Pé Diabético/complicações , Úlcera do Pé/microbiologia , Cocos Gram-Positivos/isolamento & purificação , Microbiota , Cicatrização , Idoso , Bactérias Anaeróbias , Pé Diabético/microbiologia , Feminino , Infecções por Bactérias Gram-Positivas , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Resultado do Tratamento
7.
Front Immunol ; 9: 2318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356663

RESUMO

Escherichia coli is a facultative anaerobic symbiont found widely among mammalian gastrointestinal tracts. Several human studies have reported increased commensal E. coli abundance in the intestine during inflammation; however, host immunological responses toward commensal E. coli during inflammation are not well-defined. Here, we show that colonization of gnotobiotic mice with different genotypes of commensal E. coli isolated from healthy conventional microbiota mice and representing distinct populations of E. coli elicited strain-specific disease phenotypes and immunopathological changes following treatment with the inflammatory stimulus, dextran sulfate sodium (DSS). Production of the inflammatory cytokines GM-CSF, IL-6, and IFN-γ was a hallmark of the severe inflammation induced by E. coli strains of Sequence Type 129 (ST129) and ST375 following DSS administration. In contrast, colonization with E. coli strains ST150 and ST468 caused mild intestinal inflammation and triggered only low levels of pro-inflammatory cytokines, a response indistinguishable from that of E. coli-free control mice treated with DSS. The disease development observed with ST129 and ST375 colonization was not directly associated with their abundance in the GI tract as their levels did not change throughout DSS treatment, and no major differences in bacterial burden in the gut were observed among the strains tested. Data mining and in vivo neutralization identified IL-6 as a key cytokine responsible for the observed differential disease severity. Collectively, our results show that the capacity to exacerbate acute intestinal inflammation is a strain-specific trait that can potentially be overcome by blocking the pro-inflammatory immune responses that mediate intestinal tissue damage.


Assuntos
Suscetibilidade a Doenças , Enterocolite/etiologia , Enterocolite/metabolismo , Escherichia coli , Microbioma Gastrointestinal , Interleucina-6/biossíntese , Animais , Biópsia , Citocinas/biossíntese , Modelos Animais de Doenças , Progressão da Doença , Enterocolite/patologia , Escherichia coli/classificação , Escherichia coli/genética , Feminino , Microbioma Gastrointestinal/imunologia , Imunomodulação , Interleucina-6/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Tipagem de Sequências Multilocus , Filogenia
8.
Open Forum Infect Dis ; 5(6): ofy107, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29977964

RESUMO

BACKGROUND: Rates and risk factors for recurrent enterococcal bloodstream infection (R-EBSI) and whether the same genetic lineage causes index EBSI and R-EBSI are unknown in patients with acute leukemia (AL) receiving chemotherapy. METHODS: Ninety-two AL patients with EBSI from 2010 to 2015 were included. Enterococcal bloodstream infection was defined by 31 positive blood cultures for Enterococcus faecium or Enterococcus faecalis and fever, hypotension, or chills. Clearance was defined by 31 negative cultures 324 hours after last positive culture and defervescence. Recurrent enterococcal bloodstream infection was defined by a positive blood culture for Enterococcus 324 hours after clearance. Categorical variables were reported as proportions and compared by the χ2 test. Continuous variables were summarized by median and interquartile range (IQR) and compared by the Wilcoxon-Mann-Whitney Test. P values <.05 were considered significant. Whole-genome sequencing was performed on available paired BSI isolates from 7 patients. RESULTS: Twenty-four patients (26%) had 31 episodes of R-EBSI. Median time to R-EBSI (IQR) was 26 (13-50) days. Patients with R-EBSI had significantly longer durations of fever and metronidazole exposure during their index EBSI. Thirty-nine percent of E. faecium R-EBSI isolates became daptomycin-nonsusceptible Enterococcus (DNSE) following daptomycin therapy for index EBSI. Whole-genome sequencing analysis confirmed high probability of genetic relatedness of index EBSI and R-EBSI isolates for 4/7 patients. CONCLUSIONS: Recurrent enterococcal bloodstream infection and DNSE are common in patients with AL and tend to occur within the first 30 days of index EBSI. Duration of fever and metronidazole exposure may be useful in determining risk for R-EBSI. Whole-genome sequencing analysis demonstrates that the same strain causes both EBSI and R-EBSI in some patients.

9.
PLoS One ; 13(3): e0191499, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29518088

RESUMO

Chronic obstructive pulmonary disease (COPD) is an inflammatory disorder characterized by incompletely reversible airflow obstruction. The complexity of the lung microbial community in COPD patients has been highlighted in recent years. Evidence suggests that transplantation, medications, age, and disease severity influence microbial community membership. However, the dynamics of the lung microbiome in stable COPD patients remain poorly understood. In this study, we completed a longitudinal 16S ribosomal RNA survey of the lung microbiome on replicate sputum samples collected from 4 former smokers with COPD (Stage 2) within a 2-day time period. Samples from each individual over the two-day period were similar based on α-diversity, principle component analysis and taxonomy at the phyla and genera level. Sputum samples from COPD patients were also collected between 2-9 months of follow-up. Data suggest an increased variability of the sputum microbiota when comparing samples collected ≤ 3 months compared to those collected ≥ 4 months; however, no statistically significant shifts in the abundance (>2-fold) of taxa between the two time points was observed. Bacterial composition and the number of operational taxonomic units (OTUs) remained similar over time. Results from this study suggest that the sputum microbiome is relatively stable in clinically stable COPD patients (Stage 2). This study furthers our understanding of the dynamics of the lung microbiome in COPD patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica/microbiologia , Escarro/microbiologia , Adulto , Idoso , Estudos Transversais , Exposição Ambiental , Fazendeiros , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Fatores de Tempo
10.
IMA Fungus ; 9: 225-242, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30622880

RESUMO

The biosynthetic pathway for amanitins and related cyclic peptides in deadly Amanita (Amanitaceae) mushrooms represents the first known ribosomal cyclic peptide pathway in the Fungi. Amanitins are found outside of the genus in distantly related agarics Galerina (Strophariaceae) and Lepiota (Agaricaceae). A long-standing question in the field persists: why is this pathway present in these phylogenetically disjunct agarics? Two deadly mushrooms, A. pallidorosea and A. subjunquillea, were deep sequenced, and sequences of biosynthetic genes encoding MSDINs (cyclic peptide precursor) and prolyl oligopeptidases (POPA and POPB) were obtained. The two Amanita species yielded 29 and 18 MSDINs, respectively. In addition, two MSDIN sequences were cloned from L. brunneoincarnata basidiomes. The toxin MSDIN genes encoding amatoxins or phallotoxins from the three genera were compared, and a phylogenetic tree constructed. Prolyl oligopeptidase B (POPB), a key enzyme in the biosynthetic pathway, was used in phylogenetic reconstruction to infer the evolutionary history of the genes. Phylogenies of POPB and POPA based on both coding and amino acid sequences showed very different results: while POPA genes clearly reflected the phylogeny of the host species, POPB did not; strikingly, it formed a well-supported monophyletic clade, despite that the species belong to different genera in disjunct families. POPA, a known house-keeping gene, was shown to be restricted in a branch containing only Amanita species and the phylogeny resembled that of those Amanita species. Phylogenetic analyses of MSDIN and POPB genes showed tight coordination and disjunct distribution. A POPB gene tree was compared with a corresponding species tree, and distances and substitution rates were compared. The result suggested POPB genes have significant smaller distances and rates than the house-keeping rpb2, discounting massive gene loss. Under this assumption, the incongruency between the gene tree and species tree was shown with strong support. Additionally, k-mer analyses consistently cluster Galerina and Amanita POPB genes, while Lepiota POPB is distinct. Our result suggests that horizontal gene transfer (HGT), at least between Amanita and Galerina, was involved in the acquisition of POPB genes, which may shed light on the evolution of the α-amanitin biosynthetic pathway.

11.
J Microbiol Methods ; 135: 52-62, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28189782

RESUMO

Changes in the gastrointestinal microbial community are frequently associated with chronic diseases such as Inflammatory Bowel Diseases. However, understanding the relationship of any individual taxon within the community to host physiology is made complex due to the diversity and individuality of the gut microbiota. Defined microbial communities such as the Altered Schaedler Flora (ASF) help alleviate the challenges of a diverse microbiota by allowing one to interrogate the relationship between individual bacterial species and host responses. An important aspect of studying these relationships with defined microbial communities is the ability to measure the population abundance and dynamics of each member. Herein, we describe the development of an improved ASF species-specific and sensitive real-time quantitative polymerase chain reaction (qPCR) for use with SYBR Green chemistry to accurately assess individual ASF member abundance. This approach targets hypervariable regions V1 through V3 of the 16S rRNA gene of each ASF taxon to enhance assay specificity. We demonstrate the reproducibility, sensitivity and application of this new method by quantifying each ASF bacterium in two inbred mouse lines. We also used it to assess changes in ASF member abundance before and after acute antibiotic perturbation of the community as well as in mice fed two different diets. Additionally, we describe a nested PCR assay for the detection of lowly abundant ASF members. Altogether, this improved qPCR method will facilitate gnotobiotic research involving the ASF community by allowing for reproducible quantification of its members under various physiological conditions.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Microbioma Gastrointestinal/genética , Vida Livre de Germes , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Antibacterianos , Bactérias/classificação , Ceco/microbiologia , Contagem de Colônia Microbiana , Dieta , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Genes Bacterianos , Interações Hospedeiro-Patógeno , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Modelos Biológicos , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade da Espécie , Óperon de RNAr/genética
12.
BMC Genomics ; 16: 1080, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26691573

RESUMO

BACKGROUND: Functional assignments for short-read metagenomic data pose a significant computational challenge due to perceived unpredictability of alignment behavior and the inability to infer useful functional information from translated protein-fragments/peptides. To address this problem, we have examined the predictability of short peptide alignments by systematically studying alignment behavior of large sets of short peptides generated from well-characterized proteins as well as hypothetical proteins in the KEGG database. RESULTS: Using test sets of peptides modeling the length and phylogenetic distributions of short-read metagenomic data, we observed that peptides from well-characterized proteins had indistinguishable alignments to proteins from the same orthologous family and proteins from different families. Nonetheless, the patterns contained remarkable phylogenetic and structural signals, with alignments of even very short peptides naturally restricted to their orthologous family and/or proteins having similar structural folds. In stark contrast, peptides from "hypothetical proteins" had only sparse hit patterns with low frequencies and much lower identities. By weighting the structure-driven alignments and filtering peptides with behaviors similar to those derived from "hypothetical proteins", we demonstrate that the accuracy of abundance predictions of protein families is dramatically improved. CONCLUSIONS: Evolutionary processes have dispersed protein folds across multiple protein families, precluding accurate functional assignment to short peptides, whose alignment behavior is non-random and driven by structure. Algorithms that filter sparse peptides and weight hit patterns of peptides from "known space" dramatically improve quantification of functions from diverse mixtures of peptides and should substantially improve applications of metagenomic analyses requiring accurate quantitative measures of functional families.


Assuntos
Metagenômica/métodos , Peptídeos/análise , Alinhamento de Sequência/métodos , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Filogenia
13.
Genome Biol ; 15(12): 552, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25516416

RESUMO

BACKGROUND: Individuality in the species composition of the vertebrate gut microbiota is driven by a combination of host and environmental factors that have largely been studied independently. We studied the convergence of these factors in a G10 mouse population generated from a cross between two strains to search for quantitative trait loci (QTLs) that affect gut microbiota composition or ileal Immunoglobulin A (IgA) expression in mice fed normal or high-fat diets. RESULTS: We found 42 microbiota-specific QTLs in 27 different genomic regions that affect the relative abundances of 39 taxa, including four QTL that were shared between this G10 population and the population previously studied at G4. Several of the G10 QTLs show apparent pleiotropy. Eight of these QTLs, including four at the same site on chromosome 9, show significant interaction with diet, implying that diet can modify the effects of some host loci on gut microbiome composition. Utilization patterns of IghV variable regions among IgA-specific mRNAs from ileal tissue are affected by 54 significant QTLs, most of which map to a segment of chromosome 12 spanning the Igh locus. Despite the effect of genetic variation on IghV utilization, we are unable to detect overlapping microbiota and IgA QTLs and there is no significant correlation between IgA variable pattern utilization and the abundance of any of the taxa from the fecal microbiota. CONCLUSIONS: We conclude that host genetics and diet can converge to shape the gut microbiota, but host genetic effects are not manifested through differences in IgA production


Assuntos
Bactérias/classificação , Trato Gastrointestinal/microbiologia , Imunoglobulina A/genética , Vertebrados/genética , Vertebrados/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Dieta , Feminino , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
14.
Appl Environ Microbiol ; 80(17): 5178-94, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928886

RESUMO

Fresh pork sausage is produced without a microbial kill step and therefore chilled or frozen to control microbial growth. In this report, the microbiota in a chilled fresh pork sausage model produced with or without an antimicrobial combination of sodium lactate and sodium diacetate was studied using a combination of traditional microbiological methods and deep pyrosequencing of 16S rRNA gene amplicons. In the untreated system, microbial populations rose from 10(2) to 10(6) CFU/g within 15 days of storage at 4°C, peaking at nearly 10(8) CFU/g by day 30. Pyrosequencing revealed a complex community at day 0, with taxa belonging to the Bacilli, Gammaproteobacteria, Betaproteobacteria, Actinobacteria, Bacteroidetes, and Clostridia. During storage at 4°C, the untreated system displayed a complex succession, with species of Weissella and Leuconostoc that dominate the product at day 0 being displaced by species of Pseudomonas (P. lini and P. psychrophila) within 15 days. By day 30, a second wave of taxa (Lactobacillus graminis, Carnobacterium divergens, Buttiauxella brennerae, Yersinia mollaretti, and a taxon of Serratia) dominated the population, and this succession coincided with significant chemical changes in the matrix. Treatment with lactate-diacetate altered the dynamics dramatically, yielding a monophasic growth curve of a single species of Lactobacillus (L. graminis), followed by a uniform selective die-off of the majority of species in the population. Of the six species of Lactobacillus that were routinely detected, L. graminis became the dominant member in all samples, and its origins were traced to the spice blend used in the formulation.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Armazenamento de Alimentos , Produtos da Carne/microbiologia , Anti-Infecciosos/metabolismo , Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Conservantes de Alimentos/metabolismo , Lactatos/metabolismo , RNA Ribossômico 16S/genética , Refrigeração , Análise de Sequência de DNA , Temperatura
15.
PLoS One ; 7(2): e31349, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348074

RESUMO

The increasing availability of co-crystallized protein-protein complexes provides an opportunity to use template-based modeling for protein-protein docking. Structure alignment techniques are useful in detection of remote target-template similarities. The size of the structure involved in the alignment is important for the success in modeling. This paper describes a systematic large-scale study to find the optimal definition/size of the interfaces for the structure alignment-based docking applications. The results showed that structural areas corresponding to the cutoff values <12 Å across the interface inadequately represent structural details of the interfaces. With the increase of the cutoff beyond 12 Å, the success rate for the benchmark set of 99 protein complexes, did not increase significantly for higher accuracy models, and decreased for lower-accuracy models. The 12 Å cutoff was optimal in our interface alignment-based docking, and a likely best choice for the large-scale (e.g., on the scale of the entire genome) applications to protein interaction networks. The results provide guidelines for the docking approaches, including high-throughput applications to modeled structures.


Assuntos
Simulação por Computador , Bases de Dados de Proteínas , Proteínas/química , Alinhamento de Sequência , Algoritmos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas
16.
Proteins ; 78(15): 3235-41, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20715056

RESUMO

Rapid accumulation of experimental data on protein-protein complexes drives the paradigm shift in protein docking from "traditional," template free approaches to template based techniques. Homology docking algorithms based on sequence similarity between target and template complexes can account for up to 20% of known protein-protein interactions. When highly homologous templates for the target complex are not available, but the structure of the target monomers is known, docking by local structural alignment may provide an adequate solution. Such an algorithm was developed based on the structural comparison of monomers to cocrystallized interfaces. A library of the interfaces was generated from cocrystallized protein-protein complexes in PDB. The partial structure alignment algorithm was validated on the DOCKGROUND benchmark sets. The optimal performance of the partial (interface) structure alignment was achieved with the interface residues defined by 12 Å distance across the interface. Overall, the partial structure alignment yielded more accurate models than the full structure alignment. Most templates identified by the partial structure alignment had low sequence identity to the target, which makes them hard to detect by sequence-based methods. The results indicate that the structure alignment techniques provide a much needed addition to the docking arsenal, with the combined structure alignment and template free docking success rate significantly surpassing that of the free docking alone.


Assuntos
Biologia Computacional/métodos , Modelos Químicos , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas/métodos , Homologia Estrutural de Proteína , Algoritmos , Bases de Dados de Proteínas , Modelos Moleculares , Modelos Estatísticos , Proteínas/química , Proteínas/classificação , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...