Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 20(2): 380-396, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37791766

RESUMO

ABBREVIATIONS: AFM: aromatic finger mutant; BH3D: BCL2 homology 3 domain; CCD: coiled-coil domain; CD: circular dichroism spectroscopy; [CysDM1]: C18S and C21S double mutant; [CysDM2]: C137S, and C140S double mutant; [CysTM], C18S, C21S, C137S, and C140S tetrad mutant; Dmax: maximum particle diameter; dRI, differential refractive index; EFA: evolving factor analysis; FHD: flexible helical domain; FL: full length; GFP: green fluorescent protein; HDX-MS: hydrogen/deuterium exchange mass spectrometry; ICP-MS: inductively coupled plasma mass spectrometry; IDR: intrinsically disordered region; ITC, isothermal titration calorimetry; MALS, multi angle light scattering; MBP: maltose-binding protein; MoRFs: molecular recognition features; P(r): pairwise-distance distribution; PtdIns3K: class III phosphatidylinositol 3-kinase; Rg: radius of gyration; SASBDB: small angle scattering biological data bank; SEC: size-exclusion chromatography; SEC-SAXS: size-exclusion chromatography in tandem with small angle X-ray scattering; TEV: tobacco-etch virus; TFE: 2,2,2-trifluoroethanol; TPEN: N,N,N,N-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine; Vc: volume of correlation; WT: wild-type.


Assuntos
Autofagia , Zinco , Espalhamento a Baixo Ângulo , Difração de Raios X , Autofagia/fisiologia , Domínios Proteicos
2.
Biochemistry ; 62(20): 2934-2951, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37776275

RESUMO

γ-herpesviruses (γHVs) encode BCL2 homologues (vBCL2) that bind the Bcl-2 homology 3 domains (BH3Ds) of diverse proteins, inhibiting apoptosis and promoting host cell and virus survival. vBCLs encoded by Kaposi sarcoma-associated HV (KSHV) and γHV68 downregulate autophagy, a degradative cellular process crucial for homeostasis and innate immune responses to pathogens, by binding to a BH3D in BECN1, a key autophagy protein. Epstein-Barr virus (EBV) encodes a vBCL2 called BHRF1. Here we show that unlike the KSHV and γHV68 vBCL2s, BHRF1 does not bind the isolated BECN1 BH3D. We use yeast two-hybrid assays to identify the minimal region of BECN1 required and sufficient for binding BHRF1. We confirm that this is a direct, albeit weak, interaction via affinity pull-down assays and isothermal titration calorimetry. To understand the structural bases of BHRF1 specificity, we determined the 2.6 Šcrystal structure of BHRF1 bound to the BID BH3D, which binds ∼400-times tighter to BHRF1 than does BECN1, and performed a detailed structural comparison with complexes of diverse BH3Ds bound to BHRF1 and to other antiapoptotic BCL2s. Lastly, we used mammalian cell autophagy assays to demonstrate that BHRF1 downregulates autophagy and that a cell-permeable peptide derived from the BID BH3D inhibits BHRF1-mediated downregulation of autophagy. In summary, our results suggest that BHRF1 downregulates autophagy by noncanonical binding of a flexible region of BECN1 that includes but is not limited to the BH3D and that BH3D-derived peptides that bind better to BHRF1 can block downregulation of autophagy by BHRF1.

3.
Autophagy ; 17(10): 2891-2904, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33222586

RESUMO

A key mediator of macroautophagy/autophagy induction is the class III phosphatidylinositol 3-kinase complex I (PtdIns3K-C1) consisting of PIK3C3/VPS34, PIK3R4/VPS15, BECN1, and ATG14. Although several proteins are known to enhance or decrease PtdIns3K-C1 activity, our understanding of the molecular regulation of PtdIns3K-C1 is still incomplete. Previously, we identified a Golgi-associated protein, GLIPR2, in a screen for proteins that interact with amino acids 267-284 of BECN1, a region of BECN1 sufficient to induce autophagy when fused to a cell penetrating leader sequence. In this study, we used CRISPR-Cas9-mediated depletion of GLIPR2 in cells and mice to investigate the role of GLIPR2 in the regulation of autophagy and PtdIns3K-C1 activity. Depletion of GLIPR2 in HeLa cells increased autelophagic flux and generation of phosphatidylinositol 3-phosphate (PtdIns3P). GLIPR2 knockout resulted in less compact Golgi structures, which was also observed in autophagy-inducing conditions such as amino acid starvation or Tat-BECN1 peptide treatment. Importantly, the binding of GLIPR2 to purified PtdIns3K-C1 inhibited the in vitro lipid kinase activity of PtdIns3K-C1. Moreover, the tissues of glipr2 knockout mice had increased basal autophagic flux as well as increased recruitment of the PtdIns3P-binding protein, WIPI2. Taken together, our findings demonstrate that GLIPR2 is a negative regulator of PtdIns3K-C1 activity and basal autophagy.Abbreviations: ATG14: autophagy related 14; Baf A1: bafilomycin A1; BARA: ß-α repeated, autophagy-specific; CQ: chloroquine; GFP: green fluorescent protein; GLIPR2: GLI pathogenesis related 2; HBSS: Hanks' balanced salt solution; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PBS: phosphate-buffered saline; PtdIns3K-C1: phosphatidylinositol 3-kinase complex I; PtdIns3P: phosphatidylinositol-3-phosphate; SEM: standard error of the mean; WIPI2: WD repeat domain, phosphoinositide interacting 2.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases , Proteínas de Membrana , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Fosforilação
4.
Biomolecules ; 10(9)2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932757

RESUMO

Viral BCL2 proteins (vBCL2s) help to sustain chronic infection of host proteins to inhibit apoptosis and autophagy. However, details of conformational changes in vBCL2s that enable binding to BH3Ds remain unknown. Using all-atom, multiple microsecond-long molecular dynamic simulations (totaling 17 µs) of the murine γ-herpesvirus 68 vBCL2 (M11), and statistical inference techniques, we show that regions of M11 transiently unfold and refold upon binding of the BH3D. Further, we show that this partial unfolding/refolding within M11 is mediated by a network of hydrophobic interactions, which includes residues that are 10 Å away from the BH3D binding cleft. We experimentally validate the role of these hydrophobic interactions by quantifying the impact of mutating these residues on binding to the Beclin1/BECN1 BH3D, demonstrating that these mutations adversely affect both protein stability and binding. To our knowledge, this is the first study detailing the binding-associated conformational changes and presence of long-range interactions within vBCL2s.


Assuntos
Proteína Beclina-1/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Virais/química , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Sítios de Ligação , Gammaherpesvirinae/química , Gammaherpesvirinae/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Aprendizado de Máquina , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Homologia de Sequência de Aminoácidos , Termodinâmica , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
J Biol Chem ; 295(17): 5795-5806, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32107313

RESUMO

Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-ß-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Pseudomonas/metabolismo , Transdução de Sinais , Proteínas da Membrana Bacteriana Externa/química , Cristalografia por Raios X , Modelos Moleculares , Periplasma/metabolismo , Conformação Proteica , Domínios Proteicos , Mapas de Interação de Proteínas , Pseudomonas/química , Sideróforos/metabolismo
6.
Acta Crystallogr D Struct Biol ; 73(Pt 9): 775-792, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28876241

RESUMO

Mammalian Golgi-associated plant pathogenesis-related protein 1 (GAPR-1) is a negative autophagy regulator that binds Beclin 1, a key component of the autophagosome nucleation complex. Beclin 1 residues 267-284 are required for binding GAPR-1. Here, sequence analyses, structural modeling, mutagenesis combined with pull-down assays, X-ray crystal structure determination and small-angle X-ray scattering were used to investigate the Beclin 1-GAPR-1 interaction. Five conserved residues line an equatorial GAPR-1 surface groove that is large enough to bind a peptide. A model of a peptide comprising Beclin 1 residues 267-284 docked onto GAPR-1, built using the CABS-dock server, indicates that this peptide binds to this GAPR-1 groove. Mutation of the five conserved residues lining this groove, H54A/E86A/G102K/H103A/N138G, abrogates Beclin 1 binding. The 1.27 Šresolution X-ray crystal structure of this pentad mutant GAPR-1 was determined. Comparison with the wild-type (WT) GAPR-1 structure shows that the equatorial groove of the pentad mutant is shallower and more positively charged, and therefore may not efficiently bind Beclin 1 residues 267-284, which include many hydrophobic residues. Both WT and pentad mutant GAPR-1 crystallize as dimers, and in each case the equatorial groove of one subunit is partially occluded by the other subunit, indicating that dimeric GAPR-1 is unlikely to bind Beclin 1. SAXS analysis of WT and pentad mutant GAPR-1 indicates that in solution the WT forms monomers, while the pentad mutant is primarily dimeric. Thus, changes in the structure of the equatorial groove combined with the improved dimerization of pentad mutant GAPR-1 are likely to abrogate binding to Beclin 1.


Assuntos
Proteína Beclina-1/metabolismo , Proteínas de Membrana/metabolismo , Mapas de Interação de Proteínas , Sequência de Aminoácidos , Animais , Autofagia , Proteína Beclina-1/química , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Difração de Raios X
7.
J Biol Chem ; 292(39): 16235-16248, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28798234

RESUMO

Beclin 1 (BECN1) is a key regulator of autophagy, a critical catabolic homeostasis pathway that involves sequestration of selected cytoplasmic components by multilayered vesicles called autophagosomes, followed by lysosomal fusion and degradation. BECN1 is a core component of class III phosphatidylinositol-3-kinase complexes responsible for autophagosome nucleation. Without heterologous binding partners, BECN1 forms an antiparallel homodimer via its coiled-coil domain (CCD). However, the last 16 CCD residues, composing an "overlap helix" (OH), have been crystallized in two mutually exclusive states: either as part of the CCD or packed against the C-terminal ß-α repeated, autophagy-specific domain (BARAD). Here, using CD spectroscopy, isothermal titration calorimetry, and small-angle X-ray scattering, we show that in the homodimeric state, the OH transitions between these two different packing states, with the predominant state comprising the OH packed against the BARAD, contrary to expectations based on known BECN1 interactions with heterologous partners. We confirmed this observation by comparing the impact of mutating four residues that mediate packing of the OH against both the CCD and BARAD on structure and stability of the CCD, the OH+BARAD, and the two-domain CCD-BARAD. Last, we used cellular assays to demonstrate that mutation of these OH-interface residues abrogates starvation-induced up-regulation of autophagy but does not affect basal autophagy. In summary, we have identified a BECN1 helical region that transitions between packing as part of either one of two conserved domains (i.e. the CCD or the BARAD). Our findings have important implications for the relative stability of autophagy-inactive and autophagy-active BECN1 complexes.


Assuntos
Autofagia , Proteína Beclina-1/metabolismo , Modelos Moleculares , Substituição de Aminoácidos , Proteína Beclina-1/química , Proteína Beclina-1/genética , Dicroísmo Circular , Cristalografia por Raios X , Dimerização , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células MCF-7 , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Desdobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Espalhamento a Baixo Ângulo
8.
Protein Sci ; 26(5): 972-984, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28218432

RESUMO

ATG14 binding to BECN/Beclin homologs is essential for autophagy, a critical catabolic homeostasis pathway. Here, we show that the α-helical, coiled-coil domain (CCD) of BECN2, a recently identified mammalian BECN1 paralog, forms an antiparallel, curved homodimer with seven pairs of nonideal packing interactions, while the BECN2 CCD and ATG14 CCD form a parallel, curved heterodimer stabilized by multiple, conserved polar interactions. Compared to BECN1, the BECN2 CCD forms a weaker homodimer, but binds more tightly to the ATG14 CCD. Mutation of nonideal BECN2 interface residues to more ideal pairs improves homodimer self-association and thermal stability. Unlike BECN1, all BECN2 CCD mutants bind ATG14, although more weakly than wild type. Thus, polar BECN2 CCD interface residues result in a metastable homodimer, facilitating dissociation, but enable better interactions with polar ATG14 residues stabilizing the BECN2:ATG14 heterodimer. These structure-based mechanistic differences in BECN1 and BECN2 homodimerization and heterodimerization likely dictate competitive ATG14 recruitment.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Relacionadas à Autofagia/química , Autofagia , Peptídeos e Proteínas de Sinalização Intracelular/química , Multimerização Proteica , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
9.
Protein Sci ; 25(10): 1767-85, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27414988

RESUMO

BECN1 (Beclin 1), a highly conserved eukaryotic protein, is a key regulator of autophagy, a cellular homeostasis pathway, and also participates in vacuolar protein sorting, endocytic trafficking, and apoptosis. BECN1 is important for embryonic development, the innate immune response, tumor suppression, and protection against neurodegenerative disorders, diabetes, and heart disease. BECN1 mediates autophagy as a core component of the class III phosphatidylinositol 3-kinase complexes. However, the exact mechanism by which it regulates the activity of these complexes, or mediates its other diverse functions is unclear. BECN1 interacts with several diverse protein partners, perhaps serving as a scaffold or interaction hub for autophagy. Based on extensive structural, biophysical and bioinformatics analyses, BECN1 consists of an intrinsically disordered region (IDR), which includes a BH3 homology domain (BH3D); a flexible helical domain (FHD); a coiled-coil domain (CCD); and a ß-α-repeated autophagy-specific domain (BARAD). Each of these BECN1 domains mediates multiple diverse interactions that involve concomitant conformational changes. Thus, BECN1 conformational flexibility likely plays a key role in facilitating diverse protein interactions. Further, BECN1 conformation and interactions are also modulated by numerous post-translational modifications. A better structure-based understanding of the interplay between different BECN1 conformational and binding states, and the impact of post-translational modifications will be essential to elucidating the mechanism of its multiple biological roles.


Assuntos
Autofagia/imunologia , Proteína Beclina-1/imunologia , Animais , Diabetes Mellitus/imunologia , Cardiopatias/imunologia , Humanos , Imunidade Inata , Doenças Neurodegenerativas/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Domínios Proteicos , Processamento de Proteína Pós-Traducional/imunologia , Proteínas Supressoras de Tumor/imunologia
10.
Biochemistry ; 55(30): 4239-53, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27383850

RESUMO

Autophagy, an essential eukaryotic homeostasis pathway, allows the sequestration of unwanted, damaged, or harmful cytoplasmic components in vesicles called autophagosomes, permitting subsequent lysosomal degradation and nutrient recycling. Autophagosome nucleation is mediated by class III phosphatidylinositol-3-kinase complexes that include two key autophagy proteins, BECN1/Beclin 1 and ATG14/BARKOR, which form parallel heterodimers via their coiled-coil domains (CCDs). Here we present the 1.46 Å X-ray crystal structure of the antiparallel, human BECN1 CCD homodimer, which represents BECN1 oligomerization outside the autophagosome nucleation complex. We use circular dichroism and small-angle X-ray scattering (SAXS) to show that the ATG14 CCD is significantly disordered but becomes more helical in the BECN1:ATG14 heterodimer, although it is less well-folded than the BECN1 CCD homodimer. SAXS also indicates that the BECN1:ATG14 heterodimer is more curved than other BECN1-containing CCD dimers, which has important implications for the structure of the autophagosome nucleation complex. A model of the BECN1:ATG14 CCD heterodimer that agrees well with the SAXS data shows that BECN1 residues at the homodimer interface are also responsible for heterodimerization, allowing us to identify ATG14 interface residues. Finally, we verify the role of BECN1 and ATG14 interface residues in binding by assessing the impact of point mutations of these residues on co-immunoprecipitation of the partner and demonstrate that these mutations abrogate starvation-induced upregulation of autophagy but do not impact basal autophagy. Thus, this research provides insights into structures of the BECN1 CCD homodimer and the BECN1:ATG14 CCD heterodimer and identifies interface residues that are important for BECN1:ATG14 heterodimerization and for autophagy.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/fisiologia , Autofagia/fisiologia , Proteína Beclina-1/química , Proteína Beclina-1/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Relacionadas à Autofagia/genética , Proteína Beclina-1/genética , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espalhamento a Baixo Ângulo , Inanição/fisiopatologia , Difração de Raios X
11.
Biochim Biophys Acta ; 1864(10): 1455-63, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27179590

RESUMO

Many proteins contain intrinsically disordered regions (IDRs) lacking stable secondary and ordered tertiary structure. IDRs are often implicated in macromolecular interactions, and may undergo structural transitions upon binding to interaction partners. However, as binding partners of many protein IDRs are unknown, these structural transitions are difficult to verify and often are poorly understood. In this study we describe a method to identify IDRs that are likely to undergo helical transitions upon binding. This method combines bioinformatics analyses followed by circular dichroism spectroscopy to monitor 2,2,2-trifluoroethanol (TFE)-induced changes in secondary structure content of these IDRs. Our results demonstrate that there is no significant change in the helicity of IDRs that are not predicted to fold upon binding. IDRs that are predicted to fold fall into two groups: one group does not become helical in the presence of TFE and includes examples of IDRs that form ß-strands upon binding, while the other group becomes more helical and includes examples that are known to fold into helices upon binding. Therefore, we propose that bioinformatics analyses combined with experimental evaluation using TFE may provide a general method to identify IDRs that undergo binding-induced disorder-to-helix transitions.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Dicroísmo Circular/métodos , Biologia Computacional/métodos , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Estrutura Secundária de Proteína , Trifluoretanol/química
12.
Biochemistry ; 55(13): 1945-58, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26937551

RESUMO

BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 Å sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron-electron resonance-electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1 domains. Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Lastly, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder-to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.


Assuntos
Proteínas Reguladoras de Apoptose/química , Autofagia , Proteínas de Membrana/química , Modelos Moleculares , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Sequência Conservada , Meios de Cultura Livres de Soro , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Maleabilidade , Mutação Puntual , Conformação Proteica , Redobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
13.
Biochemistry ; 54(38): 5867-77, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26313375

RESUMO

Gram-negative bacteria tightly regulate intracellular levels of iron, an essential nutrient. To ensure this strict control, some outer membrane TonB-dependent transporters (TBDTs) that are responsible for iron import stimulate their own transcription in response to extracellular binding by an iron-laden siderophore. This process is mediated by an inner membrane sigma regulator protein (an anti-sigma factor) that transduces an unknown periplasmic signal from the TBDT to release an intracellular sigma factor from the inner membrane, which ultimately upregulates TBDT transcription. Here, we use the Pseudomonas putida ferric-pseudobactin BN7/BN8 sigma regulator, PupR, as a model system to understand the molecular mechanism of this conserved class of sigma regulators. We have determined the X-ray crystal structure of the cytoplasmic anti-sigma domain (ASD) of PupR to 2.0 Å. Size exclusion chromatography, small-angle X-ray scattering, and sedimentation velocity analytical ultracentrifugation all indicate that, in contrast to other ASDs, the PupR-ASD exists as a dimer in solution. Mutagenesis of residues at the dimer interface identified from the crystal structure disrupts dimerization and protein stability, as determined by sedimentation velocity analytical ultracentrifugation and thermal denaturation circular dichroism spectroscopy. These combined results suggest that this type of inner membrane sigma regulator may utilize an unusual mechanism to sequester their cognate sigma factors and prevent transcription activation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Pseudomonas putida/química , Cristalografia por Raios X , Modelos Moleculares , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína
14.
Proteins ; 82(4): 565-78, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24115198

RESUMO

Autophagy is an essential eukaryotic pathway required for cellular homeostasis. Numerous key autophagy effectors and regulators have been identified, but the mechanism by which they carry out their function in autophagy is not fully understood. Our rigorous bioinformatic analysis shows that the majority of key human autophagy proteins include intrinsically disordered regions (IDRs), which are sequences lacking stable secondary and tertiary structure; suggesting that IDRs play an important, yet hitherto uninvestigated, role in autophagy. Available crystal structures corroborate the absence of structure in some of these predicted IDRs. Regions of orthologs equivalent to the IDRs predicted in the human autophagy proteins are poorly conserved, indicating that these regions may have diverse functions in different homologs. We also show that IDRs predicted in human proteins contain several regions predicted to facilitate protein-protein interactions, and delineate the network of proteins that interact with each predicted IDR-containing autophagy protein, suggesting that many of these interactions may involve IDRs. Lastly, we experimentally show that a BCL2 homology 3 domain (BH3D), within the key autophagy effector BECN1 is an IDR. This BH3D undergoes a dramatic conformational change from coil to α-helix upon binding to BCL2s, with the C-terminal half of this BH3D constituting a binding motif, which serves to anchor the interaction of the BH3D to BCL2s. The information presented here will help inform future in-depth investigations of the biological role and mechanism of IDRs in autophagy proteins.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sequência de Aminoácidos , Autofagia , Proteína Beclina-1 , Humanos , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência
15.
PLoS One ; 8(1): e52550, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308114

RESUMO

The oxidative degradation of biphenyl and polychlorinated biphenyls (PCBs) is initiated in Pandoraea pnomenusa B-356 by biphenyl dioxygenase (BPDO(B356)). BPDO(B356), a heterohexameric (αß)(3) Rieske oxygenase (RO), catalyzes the insertion of dioxygen with stereo- and regioselectivity at the 2,3-carbons of biphenyl, and can transform a broad spectrum of PCB congeners. Here we present the X-ray crystal structures of BPDO(B356) with and without its substrate biphenyl 1.6-Å resolution for both structures. In both cases, the Fe(II) has five ligands in a square pyramidal configuration: H233 Nε2, H239 Nε2, D386 Oδ1 and Oδ2, and a single water molecule. Analysis of the active sites of BPDO(B356) and related ROs revealed structural features that likely contribute to the superior PCB-degrading ability of certain BPDOs. First, the active site cavity readily accommodates biphenyl with minimal conformational rearrangement. Second, M231 was predicted to sterically interfere with binding of some PCBs, and substitution of this residue yielded variants that transform 2,2'-dichlorobiphenyl more effectively. Third, in addition to the volume and shape of the active site, residues at the active site entrance also apparently influence substrate preference. Finally, comparison of the conformation of the active site entrance loop among ROs provides a basis for a structure-based classification consistent with a phylogeny derived from amino acid sequence alignments.


Assuntos
Compostos de Bifenilo/metabolismo , Burkholderiaceae/enzimologia , Dioxigenases/química , Dioxigenases/metabolismo , Bifenilos Policlorados/metabolismo , Burkholderiaceae/química , Burkholderiaceae/genética , Domínio Catalítico , Cristalografia por Raios X , Dioxigenases/genética , Modelos Moleculares , Mutagênese , Filogenia , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade por Substrato
16.
Proc Natl Acad Sci U S A ; 104(2): 582-7, 2007 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-17190814

RESUMO

RIG-I is an RNA helicase containing caspase activation and recruitment domains (CARDs). RNA binding and signaling by RIG-I are implicated in pathogen recognition and triggering of IFN-alpha/beta immune defenses that impact cell permissiveness for hepatitis C virus (HCV). Here we evaluated the processes that control RIG-I signaling. RNA binding studies and analysis of cells lacking RIG-I, or the related MDA5 protein, demonstrated that RIG-I, but not MDA5, efficiently binds to secondary structured HCV RNA to confer induction of IFN-beta expression. We also found that LGP2, a helicase related to RIG-I and MDA5 but lacking CARDs and functioning as a negative regulator of host defense, binds HCV RNA. In resting cells, RIG-I is maintained as a monomer in an autoinhibited state, but during virus infection and RNA binding it undergoes a conformation shift that promotes self-association and CARD interactions with the IPS-1 adaptor protein to signal IFN regulatory factor 3- and NF-kappaB-responsive genes. This reaction is governed by an internal repressor domain (RD) that controls RIG-I multimerization and IPS-1 interaction. Deletion of the RIG-I RD resulted in constitutive signaling to the IFN-beta promoter, whereas RD expression alone prevented signaling and increased cellular permissiveness to HCV. We identified an analogous RD within LGP2 that interacts in trans with RIG-I to ablate self-association and signaling. Thus, RIG-I is a cytoplasmic sensor of HCV and is governed by RD interactions that are shared with LGP2 as an on/off switch controlling innate defenses. Modulation of RIG-I/LGP2 interaction dynamics may have therapeutic implications for immune regulation.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/imunologia , Imunidade Inata , RNA Helicases/química , RNA Helicases/imunologia , Antivirais/metabolismo , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Hepacivirus/imunologia , Humanos , Helicase IFIH1 Induzida por Interferon , Modelos Imunológicos , Estrutura Terciária de Proteína , RNA Helicases/genética , RNA Viral/metabolismo , Receptores Imunológicos , Transdução de Sinais
17.
EMBO J ; 24(4): 663-73, 2005 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-15678099

RESUMO

Rv1900c, a Mycobacterium tuberculosis adenylyl cyclase, is composed of an N-terminal alpha/beta-hydrolase domain and a C-terminal cyclase homology domain. It has an unusual 7% guanylyl cyclase side-activity. A canonical substrate-defining lysine and a catalytic asparagine indispensable for mammalian adenylyl cyclase activity correspond to N342 and H402 in Rv1900c. Mutagenic analysis indicates that these residues are dispensable for activity of Rv1900c. Structures of the cyclase homology domain, solved to 2.4 A both with and without an ATP analog, form isologous, but asymmetric homodimers. The noncanonical N342 and H402 do not interact with the substrate. Subunits of the unliganded open dimer move substantially upon binding substrate, forming a closed dimer similar to the mammalian cyclase heterodimers, in which one interfacial active site is occupied and the quasi-dyad-related active site is occluded. This asymmetry indicates that both active sites cannot simultaneously be catalytically active. Such a mechanism of half-of-sites-reactivity suggests that mammalian heterodimeric adenylyl cyclases may have evolved from gene duplication of a primitive prokaryote-type cyclase, followed by loss of function in one active site.


Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Mycobacterium tuberculosis/enzimologia , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/classificação , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Cinética , Metais/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Fosfatos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ribose/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Titulometria
18.
J Biol Chem ; 279(15): 15491-8, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-14724278

RESUMO

Imidazole glycerol-phosphate dehydratase (IGPD) catalyzes the sixth step of histidine biosynthesis. The enzyme is of fundamental biochemical interest, because it catalyzes removal of a non-acidic hydrogen atom in the dehydration reaction. It is also a potential target for development of herbicides. IGPD is a metalloenzyme in which transition metals induce aggregation and are required for catalysis. Addition of 1 equivalent of Mn(2+)/subunit is shown by analytical ultracentrifugation to induce the formation of 24-mers from trimeric IGPD. Two histidine-rich motifs may participate in metal binding and aggregation. The 2.3-A crystal structure of metal-free trimeric IGPD from the fungus Filobasidiella neoformans reveals a novel fold containing an internal repeat, apparently the result of gene duplication. The 95-residue alpha/beta half-domain occurs in a few other proteins, including the GHMP kinase superfamily (galacto-homoserine-mevalonate-phosphomevalonate), but duplication to form a compact domain has not been seen elsewhere. Conserved residues cluster at two types of sites in the trimer, each site containing a conserved histidine-rich motif. A model is proposed for the intact, active 24-mer in which all highly conserved residues, including the histidine-rich motifs in both the N- and C-terminal halves of the polypeptide, cluster at a common site between trimers. This site is a candidate for the active site and also for metal binding leading to aggregation of trimers. The structure provides a basis for further studies of enzyme function and mechanism and for development of more potent and specific herbicides.


Assuntos
Hidroliases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Basidiomycota/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Dimerização , Histidina/química , Hidrogênio/química , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Peptídeos/química , Conformação Proteica , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Ultracentrifugação
19.
J Bacteriol ; 185(14): 4087-98, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12837783

RESUMO

The purine repressor from Bacillus subtilis, PurR, represses transcription from a number of genes with functions in the synthesis, transport, and metabolism of purines. The 2.2-A crystal structure of PurR reveals a two-domain protein organized as a dimer. The larger C-terminal domain belongs to the PRT structural family, in accord with a sequence motif for binding the inducer phosphoribosylpyrophosphate (PRPP). The PRT domain is fused to a smaller N-terminal domain that belongs to the winged-helix family of DNA binding proteins. A positively charged surface on the winged-helix domain likely binds specific DNA sequences in the recognition site. A second positively charged surface surrounds the PRPP site at the opposite end of the PurR dimer. Conserved amino acids in the sequences of PurR homologs in 21 gram-positive bacteria cluster on the proposed recognition surface of the winged-helix domain and around the PRPP binding site at the opposite end of the molecule, supporting a common function of DNA and PRPP binding for all of the proteins. The structure supports a binding mechanism in which extended regions of DNA interact with extensive protein surface. Unlike most PRT proteins, which are phosphoribosyltransferases (PRTases), PurR lacks catalytic activity. This is explained by a tyrosine side chain that blocks the site for a nucleophile cosubstrate in PRTases. Thus, B. subtilis has adapted an enzyme fold to serve as an effector-binding domain and has used it in a novel combination with the DNA-binding winged-helix domain as a repressor of purine genes.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/química , Transcrição Gênica , Adaptação Fisiológica , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalização , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Fosforribosil Pirofosfato/metabolismo , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Software , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...