Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175249

RESUMO

Dispersion-inclusive density functional theory (DFT) methods have unequivocally demonstrated improved performances with respect to standard DFT approximations for modeling large and extended molecular systems at the quantum mechanical level. Yet, in some cases, disagreements with highly accurate reference calculations, such as CCSD(T) and quantum Monte Carlo (MC) calculations, still remain. Furthermore, the application of general-purpose corrections, such as the popular Grimme's semi-classical models (DFT-D), to different Kohn-Sham exchange-correlation functionals sometimes leads to variable and inconsistent results, which recommend a careful prior evaluation. In a recent study, we proposed a simple optimization protocol for enhancing the accuracy of these DFT-D methods by following an alternative and system-specific approach. Here, adopting the same computational strategy, we show how the accurate MC intermolecular interactions of a large set of water clusters of variable sizes (i.e., 300 (H2O)n structures, n = 9, 15, 27) can be reproduced remarkably well by dispersion-corrected DFT models (i.e., B3LYP-D4, PBE-D4, revPBE(0)-D4) upon re-optimization, reaching a mean absolute error per monomer of ~0.1 kcal/mol. Hence, the obtained results support the use of this procedure for fine-tuning tailored DFT-D models for the accurate description of targeted molecular systems.

2.
Phys Chem Chem Phys ; 24(4): 2491-2503, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35023509

RESUMO

For large-scale graphene applications, such as the production of polymer-graphene nanocomposites, exfoliated graphene oxide (GO) and its reduced form (rGO) are presently considered to be very suitable starting materials, showing enhanced chemical reactivity with respect to pristine graphene, in addition to suitable electronic properties (i.e., tunable band gap). Among other chemical processes, a suitable way to obtain surface decoration of graphene is through a direct one-step Diels-Alder (DA) reaction, e.g. through the use of dienophile or diene moieties. However, the feasibility and extent of decoration largely depends on the specific graphene microstructure that in the case of rGO sheets is not easy to control and generally presents a high degree of inhomogeneity owing to various on-plane functionalization (e.g., epoxide and hydroxyl groups) or in-plane lattice defects. In an effort to gain some insights into the covalent functionalization of variably reduced GO samples, we present a combined experimental and theoretical study on the DA cycloaddition reaction of maleimide, a dienophile functional unit well-suited for chemical conjugation of polymers and macromolecules. In particular, we considered both mildly and strongly reduced GOs. Using thermogravimetry, Raman and X-Ray photoelectron spectroscopy, and elemental analysis we show evidence of variable chemical reactivity of rGO as a function of the residual oxygen content. Moreover, from quantum mechanical calculations carried out at the DFT level on different graphene reaction sites, we provide a more detailed molecular view to interpret experimental findings and to assess the reactivity series of different graphene modifications.

3.
J Phys Chem A ; 125(48): 10475-10484, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34843249

RESUMO

Grimme's dispersion-corrected density functional theory (DFT-D) methods have emerged among the most practical approaches to perform accurate quantum mechanical calculations on molecular systems ranging from small clusters to microscopic and mesoscopic samples, i.e., including hundreds or thousands of molecules. Moreover, DFT-D functionals can be easily integrated into popular ab initio molecular dynamics (MD) software packages to carry out first-principles condensed-phase simulations at an affordable computational cost. Here, starting from the well-established D3 version of the dispersion-correction term, we present a simple protocol to improve the accurate description of the intermolecular interactions of molecular clusters of growing size, considering acetonitrile as a test case. Optimization of the interaction energy was performed with reference to diffusion quantum Monte Carlo calculations, successfully reaching the same inherent accuracy of the latter (statistical error of ∼0.1 kcal/mol per molecule). The refined DFT-D3 model was then used to perform ab initio MD simulations of liquid acetonitrile, again showing significant improvements toward available experimental data with respect to the default correction.

4.
J Phys Chem A ; 122(33): 6780-6788, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30063829

RESUMO

Recently, the formation of the dimeric stibahousene molecule, bis(stibahousene), has been reported. In line with the report, the formation of dimeric housene molecules with N, P, and As is examined in light of density functional theory. Moreover, the extension of the study from dimeric to tetrameric and hexameric molecules (N, P, As, and Sb) is also performed. The study supports the formation of such polymeric housene analogues.

5.
Phys Chem Chem Phys ; 19(29): 19262-19278, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28702614

RESUMO

Resonantly stabilized radicals, such as propargyl, cyclopentadienyl, benzyl, and indenyl, play a vital role in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) that are soot precursors in engines and flames. Pyrene is considered to be an important PAH, as it is thought to nucleate soot particles, but its formation pathways are not well known. This paper presents a reaction mechanism for the formation of four-ring aromatics, pyrene and fluoranthene, through the combination of benzyl and indenyl radicals. The intermediate species and transition structures involved in the elementary reactions of the mechanism were studied using density functional theory, and the reaction kinetics were evaluated using transition state theory. The barrierless addition of benzyl and indenyl to form the adduct, 1-benzyl-1H-indene, was found to be exothermic with a reaction energy of 204.2 kJ mol-1. The decomposition of this adduct through H-abstraction and H2-loss was studied to determine the possible products. The rate-of-production analysis was conducted to determine the most favourable reactions for pyrene and fluoranthene formation. The premixed laminar flames of toluene, ethylbenzene, and benzene were simulated using a well-validated hydrocarbon fuel mechanism with detailed PAH chemistry after adding the proposed reactions to it. The computed and experimentally observed species profiles were compared to determine the effect of the new reactions for pyrene and fluoranthene formation on their concentration profiles. The role of benzyl and indenyl combination in PAH formation and growth is highlighted.

6.
Phys Chem Chem Phys ; 18(11): 8120-31, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26923612

RESUMO

The role of resonantly stabilized radicals such as propargyl, cyclopentadienyl and benzyl in the formation of aromatic hydrocarbons such as benzene and naphthalene in the high temperature environments has been long known. In this work, the possibility of benzyl recombination to form three-ring aromatics, phenanthrene and anthracene, is explored. A reaction mechanism for it is developed, where reaction energetics are calculated using density functional theory (B3LYP functional with 6-311++G(d,p) basis set) and CBS-QB3, while temperature-dependent reaction kinetics are evaluated using transition state theory. The mechanism begins with barrierless formation of bibenzyl from two benzyl radicals with the release of 283.2 kJ mol(-1) of reaction energy. The further reactions involve H-abstraction by a H atom, H-desorption, H-migration, and ring closure to gain aromaticity. Through mechanism and rate of production analyses, the important reactions leading to phenanthrene and anthracene formation are determined. Phenanthrene is found to be the major product at high temperatures. Premixed laminar flame simulations are carried out by including the proposed reactions for phenanthrene formation from benzyl radicals and compared to experimentally observed species profiles to understand their effects on species concentrations.


Assuntos
Benzeno/química , Hidrocarbonetos Policíclicos Aromáticos/química , Radicais Livres , Cinética , Modelos Teóricos
7.
J Phys Chem A ; 119(38): 9889-900, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26334187

RESUMO

In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation.

8.
Dalton Trans ; 43(4): 1769-84, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24248426

RESUMO

A DFT and ab initio quantum chemical study has been carried out at different theoretical levels to delve into the role of the cation-π interaction within the main group metal cations (Li(+), Na(+) and K(+)), substituted benzene and borazine. The effects of electron withdrawing and electron donating groups on these non-covalent forces of interaction were also studied. The excellent correlation between Hammett constants and binding energy values indicates that the cation-π interaction is influenced by both inductive and resonance effects. Electron donating groups (EDG) such as -CH3 and -NH2 attached to benzene at the 1, 3 and 5 position and the three boron atoms of borazine were found to strengthen these interactions, while electron withdrawing groups (EWG) such as -NO2 did the reverse. These results were further substantiated by topological analysis using the quantum theory of atoms in molecules (QTAIM). The polarized continuum model (PCM) and the discrete solvation model were used to elucidate the effect of solvation on the cation-π interaction. The size of the cations and the nature of the substituents were found to influence the enthalpy and binding energy of the systems (or complex). In the gas phase, the cation-π interaction was found to be exothermic, whereas in the presence of a polar solvent the interaction was highly endothermic. Thermochemical analysis predicts the presence of thermodynamic driving forces for borazine and benzene substituted with EDG. DFT based reactivity descriptors, such as global hardness (η), chemical potential (µ) and the electrophilicity index (ω) were used to elucidate the effect of the substituent on the reactivity of the cation-π complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...