Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Br J Cancer ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886556

RESUMO

BACKGROUND: Occurrence of squamous cell carcinoma (SCC) even in early-stage, untreated chronic lymphocytic leukemia (CLL) patients can be a significant morbidity issue with occasional transformation into metastatic skin lesions. METHODS: CLL cells and extracellular vesicles (EVs) from CLL patients' blood/plasma were purified and used. Expression/activation of AXL and its functions in normal keratinocytes (HEKa) were assessed in vitro co-culture system and in SCC tissues. RESULTS: We detected aberrant activation of AXL, AKT and ERK-1/2 in SCC cell lines compared to HEKa. We also detected increased expression of AXL in primary SCC tissues obtained from CLL patients. Increased activation of AXL, AKT, ERK-1/2 and Src was discernible in HEKa upon co-culturing with CLL cells. Further analysis suggests that Gas6, a ligand of AXL, regulates AXL activation in co-cultured HEKa. Interestingly, exposure of HEKa cells to CLL plasma-derived EVs induced expression of AXL, P-AKT, and EMT-associated markers leading to migration of the cells. Finally, pharmacologic inhibition of AXL induced cell death in SCC lines in a dose dependent manner. CONCLUSIONS: Our findings that CLL cells likely are involved in driving SCC progression, at least in part, via activation of the AXL signaling axis, indicating that AXL inhibition may be beneficial for our CLL patients with SCC.

3.
Cancer Immunol Res ; 11(9): 1222-1236, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37378662

RESUMO

The receptor tyrosine kinase AXL is a member of the TYRO3, AXL, and proto-oncogene tyrosine-protein kinase MER family and plays pleiotropic roles in cancer progression. AXL is expressed in immunosuppressive cells, which contributes to decreased efficacy of immunotherapy. Therefore, we hypothesized that AXL inhibition could serve as a strategy to overcome resistance to chimeric antigen receptor T (CAR T)-cell therapy. To test this, we determined the impact of AXL inhibition on CD19-targeted CAR T (CART19)-cell functions. Our results demonstrate that T cells and CAR T cells express high levels of AXL. Specifically, higher levels of AXL on activated Th2 CAR T cells and M2-polarized macrophages were observed. AXL inhibition with small molecules or via genetic disruption in T cells demonstrated selective inhibition of Th2 CAR T cells, reduction of Th2 cytokines, reversal of CAR T-cell inhibition, and promotion of CAR T-cell effector functions. AXL inhibition is a novel strategy to enhance CAR T-cell functions through two independent, but complementary, mechanisms: targeting Th2 cells and reversing myeloid-induced CAR T-cell inhibition through selective targeting of M2-polarized macrophages.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases/genética
4.
Leukemia ; 36(6): 1635-1645, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35440691

RESUMO

Inhibitory myeloid cells and their cytokines play critical roles in limiting chimeric antigen receptor T (CART) cell therapy by contributing to the development of toxicities and resistance following infusion. We have previously shown that neutralization of granulocyte-macrophage colony-stimulating factor (GM-CSF) prevents these toxicities and enhances CART cell functions by inhibiting myeloid cell activation. In this report, we study the direct impact of GM-CSF disruption during the production of CD19-directed CART cells on their effector functions, independent of GM-CSF modulation of myeloid cells. In this study, we show that antigen-specific activation of GM-CSFKO CART19 cells consistently displayed reduced early activation, enhanced proliferation, and improved anti-tumor activity in a xenograft model for relapsed B cell malignancies. Activated CART19 cells significantly upregulate GM-CSF receptors. However, the interaction between GM-CSF and its upregulated receptors on CART cells was not the predominant mechanism of this activation phenotype. GM-CSFKO CART19 cell had reduced BH3 interacting-domain death agonist (Bid), suggesting an interaction between GM-CSF and intrinsic apoptosis pathways. In conclusion, our study demonstrates that CRISPR/Cas9-mediated GM-CSF knockout in CART cells directly ameliorates CART cell early activation and enhances anti-tumor activity in preclinical models.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neoplasias , Citocinas/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Ativação Linfocitária , Linfócitos T
5.
Clin J Am Soc Nephrol ; 17(3): 414-422, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35078782

RESUMO

BACKGROUND AND OBJECTIVES: Urinary stone disease has been associated with inflammation, but the specific cell interactions that mediate events remain poorly defined. This study compared calcification and inflammatory cell patterns in kidney tissue from radical nephrectomy specimens of patients without and with a history of urinary stone disease. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Nontumor parenchyma of biobanked radical nephrectomy specimens from age- and sex-matched stone formers (n=44) and nonstone formers (n=82) were compared. Calcification was detected by Yasue staining and inflammatory cell populations by immunohistochemistry for CD68 (proinflammatory M1 macrophages), CD163 and CD206 (anti-inflammatory M2 macrophages), CD3 (T lymphocytes), and tryptase (mast cells). Calcifications and inflammatory cells were quantified in cortex and medulla using Image-Pro analysis software. RESULTS: Calcification in the medulla of stone formers was higher than in nonstone formers (P<0.001). M1 macrophages in the cortex and medulla of stone formers were greater than in nonstone formers (P<0.001), and greater in stone former medulla than stone former cortex (P=0.02). There were no differences in age, sex, body mass index, tumor characteristics (size, stage, or thrombus), vascular disease status, or eGFR between the groups. M2 macrophages, T lymphocytes, and mast cells did not differ by stone former status. There was a correlation between M1 macrophages and calcification in the medulla of stone formers (rho=0.48; P=0.001) and between M2 macrophages and calcification in the medulla of nonstone formers (rho=0.35; P=0.001). T lymphocytes were correlated with calcification in the cortex of both nonstone formers (rho=0.27; P=0.01) and stone formers (rho=0.42; P=0.004), whereas mast cells and calcification were correlated only in the cortex of stone formers (rho=0.35; P=0.02). CONCLUSIONS: Higher medullary calcification stimulated accumulation of proinflammatory rather than anti-inflammatory macrophages in stone formers.


Assuntos
Cálculos Renais , Cálculos Urinários , Feminino , Humanos , Cálculos Renais/complicações , Cálculos Renais/cirurgia , Masculino , Nefrectomia/efeitos adversos
7.
Blood Cancer J ; 11(5): 86, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972504

RESUMO

Richter syndrome (RS) refers to transformation of chronic lymphocytic leukemia (CLL) to an aggressive lymphoma, most commonly diffuse large B-cell lymphoma. RS is known to be associated with a number of genetic alterations such as TP53 and NOTCH1 mutations. However, it is unclear what immune microenvironment changes are associated with RS. In this study, we analyzed expression of immune checkpoint molecules and infiltration of immune cells in nodal samples, and peripheral blood T-cell diversity in 33 CLL and 37 RS patients. Compared to CLL, RS nodal tissue had higher PD-L1 expression in histiocytes and dendritic cells (median 16.6% vs. 2.8%, P < 0.01) and PD1 expression in neoplastic B cells (median 26.0% vs. 6.2%, P < 0.01), and higher infiltration of FOXP3-positive T cells (median 1.7% vs. 0.4%, P < 0.01) and CD163-positive macrophages (median 23.4% vs. 9.1%, P < 0.01). In addition, peripheral blood T-cell receptor clonality was significantly lower in RS vs. CLL patients (median [25th-75th], 0.107 [0.070-0.209] vs. 0.233 [0.111-0.406], P = 0.046), suggesting that T cells in RS patients were significantly more diverse than in CLL patients. Collectively these data suggest that CLL and RS have distinct immune signatures. Better understanding of the immune microenvironment is essential to improve immunotherapy efficacy in CLL and RS.


Assuntos
Antígeno B7-H1/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Linfoma Difuso de Grandes Células B/imunologia , Receptor de Morte Celular Programada 1/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/imunologia , Linfócitos B/patologia , Antígeno B7-H1/análise , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/patologia , Progressão da Doença , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/análise , Linfócitos T/imunologia , Linfócitos T/patologia , Evasão Tumoral , Microambiente Tumoral
8.
Blood Cancer J ; 11(5): 93, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001853

RESUMO

Mitochondrial metabolism is the key source for abundant ROS in chronic lymphocytic leukemia (CLL) cells. Here, we detected significantly lower superoxide anion (O2-) levels with increased accumulation of hydrogen peroxide (H2O2) in CLL cells vs. normal B-cells. Further analysis indicated that mitochondrial superoxide dismutase (SOD)2, which converts O2- into H2O2 remained deacetylated in CLL cells due to SIRT3 overexpression resulting its constitutive activation. In addition, catalase expression was also reduced in CLL cells suggesting impairment of H2O2-conversion into water and O2 which may cause H2O2-accumulation. Importantly, we identified two CpG-islands in the catalase promoter and discovered that while the distal CpG-island (-3619 to -3765) remained methylated in both normal B-cells and CLL cells, variable degrees of methylation were discernible in the proximal CpG-island (-174 to -332) only in CLL cells. Finally, treatment of CLL cells with a demethylating agent increased catalase mRNA levels. Functionally, ROS accumulation in CLL cells activated the AXL survival axis while upregulated SIRT3, suggesting that CLL cells rapidly remove highly reactive O2- to avoid its cytotoxic effect but maintain increased H2O2-level to promote cell survival. Therefore, abrogation of aberrantly activated cell survival pathways using antioxidants can be an effective intervention in CLL therapy in combination with conventional agents.


Assuntos
Catalase/genética , Leucemia Linfocítica Crônica de Células B/genética , Proteínas Proto-Oncogênicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Sirtuína 3/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Catalase/metabolismo , Feminino , Regulação Leucêmica da Expressão Gênica , Inativação Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Sirtuína 3/metabolismo , Células Tumorais Cultivadas , Regulação para Cima , Receptor Tirosina Quinase Axl
11.
Oncotarget ; 9(98): 37173-37184, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30647852

RESUMO

Earlier we have shown the expression of a constitutively active receptor tyrosine kinase Axl in CLL B-cells from previously untreated CLL patients, and that Axl inhibitor TP-0903 induces robust leukemic B-cell death. To explore whether Axl is an effective target in relapsed/refractory CLL patients, we analyzed CLL B-cells obtained from CLL patients on ibrutinib therapy. Ibrutinib-exposed CLL B-cells were treated with increasing doses (0.01- 0.50µM) of a new formulation of high-affinity Axl inhibitor, TP-0903 (tartrate salt), for 24 hours and LD50 doses were determined. Sensitivity of CLL B-cells was compared with known prognostic factors and effect of TP-0903 was also evaluated on Axl signaling pathway in CLL B-cells from this cohort. We detected sustained overexpression of Axl in CLL B-cells from CLL patients on ibrutinib treatment, suggests targeting Axl could be a promising strategy to overcome drug resistance and killing of CLL B-cells in these patients. We found that CLL B-cells from sixty-nine percent of relapsed CLL patients actively on ibrutinib therapy were found to be highly sensitive to TP-0903 with induction of apoptosis at nanomolar doses (≤0.50 µM). TP-0903 treatment effectively inhibited Axl phosphorylation and reduced expression levels of anti-apoptotic proteins (Mcl-1, XIAP) in ibrutinib exposed CLL B-cells. In total, our in vitro preclinical studies showing that TP-0903 is very effective at inducing apoptosis in CLL B-cells obtained from ibrutinib-exposed patients supports further testing of this drug in relapsed/refractory CLL.

12.
Blood ; 129(26): 3419-3427, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28424162

RESUMO

Chronic lymphocytic leukemia (CLL) patients progressed early on ibrutinib often develop Richter transformation (RT) with a short survival of about 4 months. Preclinical studies suggest that programmed death 1 (PD-1) pathway is critical to inhibit immune surveillance in CLL. This phase 2 study was designed to test the efficacy and safety of pembrolizumab, a humanized PD-1-blocking antibody, at a dose of 200 mg every 3 weeks in relapsed and transformed CLL. Twenty-five patients including 16 relapsed CLL and 9 RT (all proven diffuse large cell lymphoma) patients were enrolled, and 60% received prior ibrutinib. Objective responses were observed in 4 out of 9 RT patients (44%) and in 0 out of 16 CLL patients (0%). All responses were observed in RT patients who had progression after prior therapy with ibrutinib. After a median follow-up time of 11 months, the median overall survival in the RT cohort was 10.7 months, but was not reached in RT patients who progressed after prior ibrutinib. Treatment-related grade 3 or above adverse events were reported in 15 (60%) patients and were manageable. Analyses of pretreatment tumor specimens from available patients revealed increased expression of PD-ligand 1 (PD-L1) and a trend of increased expression in PD-1 in the tumor microenvironment in patients who had confirmed responses. Overall, pembrolizumab exhibited selective efficacy in CLL patients with RT. The results of this study are the first to demonstrate the benefit of PD-1 blockade in CLL patients with RT, and could change the landscape of therapy for RT patients if further validated. This trial was registered at www.clinicaltrials.gov as #NCT02332980.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Adenina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Transformação Celular Neoplásica , Intervalo Livre de Doença , Feminino , Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/mortalidade , Linfoma Difuso de Grandes Células B/mortalidade , Masculino , Pessoa de Meia-Idade , Piperidinas , Receptor de Morte Celular Programada 1/genética , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Recidiva , Análise de Sobrevida
13.
BMC Cancer ; 16: 336, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27229859

RESUMO

BACKGROUND: Studies over the past decade and half have identified cancer stem cells (CSCs) to be responsible for tumorigenesis, invasion, sustenance of metastatic disease, radio- and chemo-resistance and tumor relapse. Recent reports have described the plasticity of breast CSCs (BCSCs) to shift between the epithelial and mesenchymal phenotypes via Epithelial-Mesenchymal Transition (EMT) and Mesenchymal-Epithelial Transition (MET) states as the reason for their invasive capabilities. Additionally, BRCA1 has been found to be a mammary stem cell fate determinant. However, it is not clear what would be the best marker that can be used for identifying CSCs in BRCA1 mutated cancers. Also, anticancer agents that can reduce CSC population in a BRCA1 defective condition have not been addressed so far. METHODS: Putative BCSCs were identified based on Hoechst exclusion, CD44(+)/24(-/low) expression and Aldehyde Dehydrogenase 1 (ALDH1) positivity using flow cytometry. The 'stemness' of the isolated ALDH1+ cells were analysed by immunofluorescence, western blotting for stem cell and EMT markers as well as in vitro mammosphere assays. Induction of Reactive Oxygen Species (ROS) by Plumbagin (PB) in BCSCs was assayed by Dichloro-dihydro-fluorescein diacetate (DCF-DA) staining. Ovarian cancer xenografts treated with PB were subjected to immunohistochemical analysis to study the ability of PB to target CSCs. RESULTS: We have confirmed that ALDH1 positivity is the best marker for the identification of BCSCs in BRCA1-defective breast cancer cell lines when compared to the CD marker profile and Side Population (SP) analysis. BRCA1 status was observed to be a determinant of the abundance of epithelial-like (ALDH1+) or mesenchymal-like (CD44(+)/24(-/low)) BCSCs, and the reconstitution of a full length, wild type BRCA1 in HCC1937 breast cancer cells possessing a mutated BRCA1, transforms them from 'stem-like' to more 'mesenchymal'. For the first time we have shown that Plumbagin (PB), a naturally occurring naphthoquinone which is predominantly a ROS inducer, could reduce BCSCs specifically in BRCA1-defective, basal-like cancer cells. CONCLUSIONS: The best marker for identifying BCSCs in BRCA1 defective condition could be ALDH1 and that BRCA1 mutated BCSCs would be mostly 'stem like' than 'mesenchymal'. Also ROS inducers like PB could reduce BCSCs in BRCA1 defective cancers.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteína BRCA1/genética , Neoplasias da Mama/patologia , Naftoquinonas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Proteína BRCA1/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Carboplatina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Concentração Inibidora 50 , Camundongos SCID , Naftoquinonas/uso terapêutico , Células-Tronco Neoplásicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Leuk Lymphoma ; 57(10): 2409-16, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27189785

RESUMO

Here we tested impact of Tris (dibenzylideneacetone) dipalladium (Tris-DBA) on chronic lymphocytic leukemia (CLL) B-cell survival. Indeed, treatment of CLL B-cells with Tris-DBA induced apoptosis in a dose-dependent manner irrespective of IgVH mutational status. Further analyses suggest that Tris-DBA-induced apoptosis involves reduced expression of the anti-apoptotic proteins Bcl-xL, and XIAP with an upregulation of the pro-apoptotic protein BIM in CLL B-cells. Our findings also indicate that Tris-DBA targets the ribosomal protein (rp)-S6, an essential component of the Akt/mTOR signaling axis in CLL B-cells. Of interest, CLL bone marrow stromal cells were unable to protect the leukemic B cells from Tris-DBA-induced apoptosis in an in vitro co-culture system. Finally, co-administration of Tris-DBA and the purine nucleoside analog fludarabine (F-ara-A) augmented CLL B-cell apoptosis levels in vitro showing synergistic effects. In total, Tris-DBA is effective at inducing apoptosis in CLL B-cells even in the presence of stromal cells likely by targeting directly the signal mediator, rpS6.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Tumorais Cultivadas
15.
J Cell Sci ; 128(19): 3556-68, 2015 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-26136364

RESUMO

Vasculogenesis and angiogenesis are controlled by vascular endothelial growth factor A (VEGF-A). Dysregulation of these physiological processes contributes to the pathologies of heart disease, cancer and stroke. Rho GTPase proteins play an integral role in VEGF-mediated formation and maintenance of blood vessels. The regulatory functions of RhoA and RhoB in vasculogenesis and angiogenesis are well defined, whereas the purpose of RhoC remains poorly understood. Here, we describe how RhoC promotes vascular homeostasis by modulating endothelial cell migration, proliferation and permeability. RhoC stimulates proliferation of human umbilical vein endothelial cells (HUVECs) by stabilizing nuclear ß-catenin, which promotes transcription of cyclin D1 and subsequently drives cell cycle progression. RhoC negatively regulates endothelial cell migration through MAPKs and downstream MLC2 signaling, and decreases vascular permeability through downregulation of the phospholipase Cγ (PLCγ)-Ca(2+)-eNOS cascade in HUVECs. Using a VEGF-inducible zebrafish (Danio rerio) model, we observed significantly increased vascular permeability in RhoC morpholino (MO)-injected zebrafish compared with control MO-injected zebrafish. Taken together, our findings suggest that RhoC is a key regulator of vascular homeostasis in endothelial cells.


Assuntos
Células Endoteliais/fisiologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Humanos , Hibridização In Situ , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas rho de Ligação ao GTP/genética , Proteína de Ligação a GTP rhoC
16.
Clin Cancer Res ; 21(9): 2115-26, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25673699

RESUMO

PURPOSE: B-cell chronic lymphocytic leukemia (CLL) is an incurable disease despite aggressive therapeutic approaches. We previously found that Axl receptor tyrosine kinase (RTK) plays a critical role in CLL B-cell survival. Here, we explored the possibility of using a high-affinity Axl inhibitor as a single agent or in combination with Bruton's tyrosine kinase (BTK) inhibitors for future clinical trial to treat patients with CLL. EXPERIMENTAL DESIGN: Expression/activation status of other members of the TAM (e.g., Tyro3, Axl, and MER) family of RTKs in CLL B cells was evaluated. Cells were treated with a high-affinity orally bioavailable Axl inhibitor TP-0903 with or without the presence of CLL bone marrow stromal cells (BMSCs). Inhibitory effects of TP-0903 on the Axl signaling pathway were also evaluated in CLL B cells. Finally, cells were exposed to TP-0903 in combination with BTK inhibitors to determine any synergistic/additive effects of the combination. RESULTS: CLL B cells overexpress Tyro3, but not MER. Of interest, Tyro3 remains as constitutively phosphorylated and forms a complex with Axl in CLL B cells. TP-0903 induces massive apoptosis in CLL B cells with LD50 values of nanomolar ranges. Importantly, CLL BMSCs could not protect the leukemic B cells from TP-0903-induced apoptosis. A marked reduction of the antiapoptotic proteins Mcl-1, Bcl-2, and XIAP and upregulation of the proapoptotic protein BIM in CLL B cells was detected as a result of Axl inhibition. Finally, combination of TP-0903 with BTK inhibitors augments CLL B-cell apoptosis. CONCLUSIONS: Administration of TP-0903 either as a single agent or in combination with BTK inhibitors may be effective in treating patients with CLL.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Sulfonamidas/farmacologia , Tirosina Quinase da Agamaglobulinemia , Linfócitos B , Western Blotting , Células Cultivadas , Técnicas de Cocultura , Sinergismo Farmacológico , Citometria de Fluxo , Humanos , Imunoprecipitação , Inibidores de Proteínas Quinases/farmacologia , Transfecção , Receptor Tirosina Quinase Axl
17.
Biochim Biophys Acta ; 1843(2): 346-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24275509

RESUMO

The pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) increases expression of CD38 (a membrane-associated bifunctional enzyme regulating cyclic ADP ribose), and enhances agonist-induced intracellular Ca(2+) ([Ca(2+)]i) responses in human airway smooth muscle (ASM). We previously demonstrated that caveolae and their constituent protein caveolin-1 are important for ASM [Ca(2+)]i regulation, which is further enhanced by TNFα. Whether caveolae and CD38 are functionally linked in mediating TNFα effects is unknown. In this regard, whether the related cavin proteins (cavin-1 and -3) that maintain structure and function of caveolae play a role is also not known. In the present study, we hypothesized that TNFα effects on CD38 expression and function in human ASM involve caveolae. Caveolar fractions from isolated human ASM cells expressed CD38 and its expression was upregulated by exposure to 20ng/ml TNFα (48h). ASM cells expressed cavin-1 and cavin-3, which were also upregulated by TNFα. Knockdown of caveolin-1, cavin-1 or cavin-3 (using siRNA) all significantly reduced CD38 expression and ADP-ribosyl cyclase activity in the presence or absence of TNFα. Furthermore, caveolin-1, cavin-1 and cavin-3 siRNAs reduced [Ca(2+)]i responses to histamine under control conditions, and blunted the enhanced [Ca(2+)]i responses in TNFα-exposed cells. These data demonstrate that CD38 is expressed within caveolae and its function is linked to the caveolar regulatory proteins caveolin-1, cavin-1 and -3. The link between caveolae and CD38 is further enhanced during airway inflammation demonstrating the important role of caveolae in regulation of [Ca(2+)]i and contractility in the airway.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Cálcio/metabolismo , Cavéolas/metabolismo , Inflamação/patologia , Glicoproteínas de Membrana/metabolismo , Músculo Liso/metabolismo , Músculo Liso/patologia , Sistema Respiratório/patologia , ADP-Ribosil Ciclase/metabolismo , Cavéolas/efeitos dos fármacos , Caveolina 1/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculo Liso/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos
18.
Int J Cancer ; 132(5): 1201-12, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22806981

RESUMO

Angiogenesis is a hallmark of tumor development and metastatic progression, and anti-angiogenic drugs targeting the VEGF pathway have shown to decrease the disease progression in cancer patients. In this study, we have analyzed the anti-proliferative and anti-angiogenic property of plumbagin in cisplatin sensitive, BRCA2 deficient, PEO-1 and cisplatin resistant, BRCA2 proficient PEO-4 ovarian cancer cells. Both PEO-1 and PEO-4 ovarian cancer cells are sensitive to plumbagin irrespective of BRCA2 status in both normoxia and hypoxia. Importantly, plumbagin treatment effectively inhibits VEGF-A and Glut-1 in PEO-1 and PEO-4 ovarian cancer cells. We have also analyzed the p53 mutant, cisplatin resistant, and BRCA2 proficient OVCAR-5 cells. Plumbagin challenge also restricts the VEGF induced pro-angiogenic signaling in HUVECs and subsequently endothelial cell proliferation. In addition, we observe a significant effect on tumor regression among OVCAR-5 tumor-bearing mice treated with plumbagin, which is associated with significant inhibition of Ki67 and vWF expressions. Plumbagin also significantly reduces CD31 expression in an ear angiogenesis assay. Collectively, our studies indicate that plumbagin, as an anti-cancer agent disrupts growth of ovarian cancer cells through the inhibition of proliferation as well as angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Naftoquinonas/farmacologia , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Cisplatino/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos SCID , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Distribuição Aleatória , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Cell Sci ; 124(Pt 13): 2132-42, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21652636

RESUMO

One of the mechanisms of tumorigenesis is that the failure of cell division results in genetically unstable, multinucleated cells. Here we show that pVHL, a tumor suppressor protein that has been implicated in the pathogenesis of renal cell carcinoma (RCC), plays an important role in regulation of cytokinesis. We found that pVHL-deficient RCC 786-O cells were multinucleated and polyploid. Reintroduction of wild-type pVHL into these cells rescued the diploid cell population, whereas the mutant pVHL-K171G failed to do so. We demonstrate that lysine 171 of pVHL is important for the final step of cytokinesis: the midbody abscission. The pVHL-K171G caused failure to localize the ESCRT-1 interacting protein Alix and the v-SNARE complex component Endobrevin to the midbody in 786-O cells, leading to defective cytokinesis. Moreover, SUMOylation of pVHL at lysine 171 might modulate its function as a cytokinesis regulator. pVHL tumor suppressor function was also disrupted by the K171G mutation, as evidenced by the xenograft tumor formation when 786-O clones expressing pVHL-K171G were injected into mice. Most RCC cell lines show a polyploid chromosome complement and consistent heterogeneity in chromosome number. Thus, this study offers a way to explain the chromosome instability in RCC and reveals a new direction for the tumor suppressor function of pVHL, which is independent of its E3 ubiquitin ligase activity.


Assuntos
Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Citocinese/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Instabilidade Cromossômica , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Neoplasias Renais/genética , Camundongos , Camundongos Nus , Mutação , Poliploidia , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
20.
J Med Chem ; 54(7): 2378-90, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21391684

RESUMO

Haloperidol (HP), a neuroleptic drug, shows high affinity toward σ receptors (SR). HP and reduced-HP at higher concentration were known to induce apoptosis in SR-overexpressing carcinomas and melanomas. Herein, we report the development of cationic lipid-conjugated haloperidol as a new class of anticancer therapeutics. In comparison to HP, the C-8 carbon chain analogue (HP-C8) showed significantly high, SR-assisted antiproliferative activity against cancer cells via caspase-3-mediated apoptosis and down-regulation of pAkt. Moreover, melanoma tumor aggressiveness in HP-C8-treated mice was significantly lower than that in HP-treated mice. HP-C8 simultaneously reduced Akt-protein level and increased Bax/Bcl-2 ratio in vascular endothelial cells, thereby indicating a possible protein kinase down-regulatory and apoptosis inducing role in tumor-associated vascular cells. In conclusion, we developed σ receptor-targeting cationic lipid-modified HP derivatives as a promising class of anticancer therapeutic that concurrently affects cancer and tumor environment associated angiogenic vascular cells through induction of apoptosis and Akt protein down-regulation.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Descoberta de Drogas , Haloperidol/química , Haloperidol/farmacologia , Lipídeos/química , Animais , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/genética , Células COS , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Técnicas de Silenciamento de Genes , Haloperidol/toxicidade , Humanos , Masculino , Camundongos , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Receptores sigma/deficiência , Receptores sigma/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...