Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 16(20): e202300808, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37337311

RESUMO

Direct air capture (DAC) of CO2 by solid porous materials represents an attractive "negative emission" technology. However, state-of-the-art sorbents based on supported amines still suffer from unsolved high energy consumption and stability issues. Herein, taking clues from the CO2 interaction with superbase-derived ionic liquids (SILs), high-performance and tunable sorbents in DAC of CO2 was developed by harnessing the power of CaO- and SIL-engineered sorbents. Deploying mesoporous silica as the substrate, a thin CaO layer was first introduced to consume the surface-OH groups, and then active sites with different basicities (e. g., triazolate and imidazolate) were introduced as a uniformly distributed thin layer. The as-obtained sorbents displayed high CO2 uptake capacity via volumetric (at 0.4 mbar) and breakthrough test (400 ppm CO2 source), rapid interaction kinetics, facile CO2 releasing, and stable sorption/desorption cycles. Operando diffuse reflectance infrared Fourier transformation spectroscopy (DRIFTS) analysis under simulated air atmosphere and solid-state NMR under 13 CO2 atmosphere demonstrated the critical roles of the SIL species in low-concentration CO2 capture. The fundamental insights obtained in this work provide guidance on the development of high-performance sorbents in DAC of CO2 by leveraging the combined advantages of porous solid scaffolds and the unique features of CO2 -philic ionic liquids.

2.
Angew Chem Int Ed Engl ; 62(20): e202214322, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36696269

RESUMO

The development of facile methodologies to afford robust supported metal nanocatalysts under mild conditions is highly desirable yet challenging, particularly via strong metal-support interactions (SMSI) construction. State-of-the-art approaches capable of generating SMSI encapsulation mainly focus on high temperature annealing in reductive/oxidative atmosphere. Herein, ultra-stable metal nanocatalysts based on SMSI construction were produced by leveraging the instantaneous high-energy input from ultrasonication under ambient conditions in H2 O, which could rapidly afford abundant active intermediates, Ti3+ ions, and oxygen vacancies within the scaffolds to induce the SMSI overlayer formation. The encapsulation degree could be tuned and controlled via the reducibility of the solvents and the ultrasonication parameters. This facile and efficient approach could be further extended to diverse metal oxide supports and noble metal NPs leading to enhanced performance in hydrogenation reactions and CO2 conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...