Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37192001

RESUMO

Radiographic contact of glioblastoma (GBM) tumors with the lateral ventricle and adjacent stem cell niche correlates with poor patient prognosis, but the cellular basis of this difference is unclear. Here, we reveal and functionally characterize distinct immune microenvironments that predominate in subtypes of GBM distinguished by proximity to the lateral ventricle. Mass cytometry analysis of isocitrate dehydrogenase wild-type human tumors identified elevated T cell checkpoint receptor expression and greater abundance of a specific CD32+CD44+HLA-DRhi macrophage population in ventricle-contacting GBM. Multiple computational analysis approaches, phospho-specific cytometry, and focal resection of GBMs validated and extended these findings. Phospho-flow quantified cytokine-induced immune cell signaling in ventricle-contacting GBM, revealing differential signaling between GBM subtypes. Subregion analysis within a given tumor supported initial findings and revealed intratumor compartmentalization of T cell memory and exhaustion phenotypes within GBM subtypes. Collectively, these results characterize immunotherapeutically targetable features of macrophages and suppressed lymphocytes in GBMs defined by MRI-detectable lateral ventricle contact.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/patologia , Glioblastoma/genética , Neoplasias Encefálicas/genética , Linfócitos/patologia , Macrófagos/patologia , Microambiente Tumoral
2.
Neurobiol Dis ; 143: 104975, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574724

RESUMO

Mutations in the DEPDC5 gene can cause epilepsy, including forms with and without brain malformations. The goal of this study was to investigate the contribution of DEPDC5 gene dosage to the underlying neuropathology of DEPDC5-related epilepsies. We generated induced pluripotent stem cells (iPSCs) from epilepsy patients harboring heterozygous loss of function mutations in DEPDC5. Patient iPSCs displayed increases in both phosphorylation of ribosomal protein S6 and proliferation rate, consistent with elevated mTORC1 activation. In line with these findings, we observed increased soma size in patient iPSC-derived cortical neurons that was rescued with rapamycin treatment. These data indicate that human cells heterozygous for DEPDC5 loss-of-function mutations are haploinsufficient for control of mTORC1 signaling. Our findings suggest that human pathology differs from mouse models of DEPDC5-related epilepsies, which do not show consistent phenotypic differences in heterozygous neurons, and support the need for human-based models to affirm and augment the findings from animal models of DEPDC5-related epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos/genética , Proteínas Ativadoras de GTPase/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Epilepsia Resistente a Medicamentos/metabolismo , Haploinsuficiência , Humanos , Células-Tronco Pluripotentes Induzidas , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Transdução de Sinais/fisiologia
3.
Elife ; 92020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573435

RESUMO

A goal of cancer research is to reveal cell subsets linked to continuous clinical outcomes to generate new therapeutic and biomarker hypotheses. We introduce a machine learning algorithm, Risk Assessment Population IDentification (RAPID), that is unsupervised and automated, identifies phenotypically distinct cell populations, and determines whether these populations stratify patient survival. With a pilot mass cytometry dataset of 2 million cells from 28 glioblastomas, RAPID identified tumor cells whose abundance independently and continuously stratified patient survival. Statistical validation within the workflow included repeated runs of stochastic steps and cell subsampling. Biological validation used an orthogonal platform, immunohistochemistry, and a larger cohort of 73 glioblastoma patients to confirm the findings from the pilot cohort. RAPID was also validated to find known risk stratifying cells and features using published data from blood cancer. Thus, RAPID provides an automated, unsupervised approach for finding statistically and biologically significant cells using cytometry data from patient samples.


Assuntos
Glioblastoma/fisiopatologia , Aprendizado de Máquina não Supervisionado , Algoritmos , Humanos , Projetos Piloto , Células Tumorais Cultivadas
4.
Am J Pathol ; 188(1): 29-38, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024634

RESUMO

Increasing evidence indicates that the adult neurogenic niche of the ventricular-subventricular zone (V-SVZ), beyond serving as a potential site of origin, affects the outcome of malignant brain cancers. Glioma contact with this niche predicts worse prognosis, suggesting a supportive role for the V-SVZ environment in tumor initiation or progression. In this review, we describe unique components of the V-SVZ that may permit or promote tumor growth within the region. Cell-cell interactions, soluble factors, and extracellular matrix composition are discussed, and the role of the niche in future therapies is explored. The purpose of this review is to highlight niche intrinsic factors that may promote or support malignant cell growth and maintenance, and point out how we might leverage these features to improve patient outcome.


Assuntos
Neoplasias Encefálicas/patologia , Células-Tronco Neurais/patologia , Neurogênese/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Humanos
6.
Curr Protoc Mol Biol ; 118: 25C.1.1-25C.1.23, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28369679

RESUMO

Mass cytometry is a single-cell biology technique that samples >500 cells per second, measures >35 features per cell, and is sensitive across a dynamic range of >104 relative intensity units per feature. This combination of technical assets has powered a series of recent cytomic studies where investigators used mass cytometry to measure protein and phospho-protein expression in millions of cells, characterize rare cell types in healthy and diseased tissues, and reveal novel, unexpected cells. However, these advances largely occurred in studies of blood, lymphoid tissues, and bone marrow, since the cells in these tissues are readily obtained in single-cell suspensions. This unit establishes a primer for single-cell analysis of solid tumors and tissues, and has been tested with mass cytometry. The cells obtained from these protocols can be fixed for study, cryopreserved for long-term storage, or perturbed ex vivo to dissect responses to stimuli and inhibitors. © 2017 by John Wiley & Sons, Inc.


Assuntos
Citometria de Fluxo/métodos , Neoplasias/patologia , Análise de Célula Única/métodos , Separação Celular/métodos , Criopreservação/métodos , Humanos
7.
Proc Natl Acad Sci U S A ; 114(7): 1708-1713, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28130548

RESUMO

The ß2-adrenergic receptor (ß2AR) has been a model system for understanding regulatory mechanisms of G-protein-coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known ß-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human ß2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the ß2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the ß2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the ß2AR. In cell-signaling studies, 15 inhibits cAMP production through the ß2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits ß-arrestin recruitment to the activated ß2AR. This study presents an allosteric small-molecule ligand for the ß2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Receptores Adrenérgicos beta 2/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Animais , Sítios de Ligação/genética , Ligação Competitiva/efeitos dos fármacos , DNA/genética , Humanos , Ligantes , Estrutura Molecular , Mutação , Receptores Adrenérgicos beta 2/genética , Células Sf9 , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Spodoptera
8.
Cytometry B Clin Cytom ; 92(1): 68-78, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27598832

RESUMO

BACKGROUND: Mass cytometry measures 36 or more markers per cell and is an appealing platform for comprehensive phenotyping of cells in human tissue and tumor biopsies. While tissue disaggregation and fluorescence cytometry protocols were pioneered decades ago, it is not known whether established protocols will be effective for mass cytometry and maintain cancer and stromal cell diversity. METHODS: Tissue preparation techniques were systematically compared for gliomas and melanomas, patient derived xenografts of small cell lung cancer, and tonsil tissue as a control. Enzymes assessed included DNase, HyQTase, TrypLE, collagenase (Col) II, Col IV, Col V, and Col XI. Fluorescence and mass cytometry were used to track cell subset abundance following different enzyme combinations and treatment times. RESULTS: Mechanical disaggregation paired with enzymatic dissociation by Col II, Col IV, Col V, or Col XI plus DNase for 1 h produced the highest yield of viable cells per gram of tissue. Longer dissociation times led to increasing cell death and disproportionate loss of cell subsets. Key markers for establishing cell identity included CD45, CD3, CD4, CD8, CD19, CD64, HLA-DR, CD11c, CD56, CD44, GFAP, S100B, SOX2, nestin, vimentin, cytokeratin, and CD31. Mass and fluorescence cytometry identified comparable frequencies of cancer cell subsets, leukocytes, and endothelial cells in glioma (R = 0.97), and tonsil (R = 0.98). CONCLUSIONS: This investigation establishes standard procedures for preparing viable single cell suspensions that preserve the cellular diversity of human tissue microenvironments. © 2016 International Clinical Cytometry Society.


Assuntos
Citometria de Fluxo , Neoplasias/patologia , Análise de Célula Única , Antígenos CD/metabolismo , Citometria de Fluxo/métodos , Antígenos HLA-DR/análise , Humanos , Células Jurkat/citologia , Antígenos Comuns de Leucócito/análise , Análise de Célula Única/métodos
9.
J Cell Sci ; 128(18): 3444-55, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26272915

RESUMO

Directed delivery of EGF receptor (EGFR) ligands to the apical or basolateral surface is a crucial regulatory step in the initiation of EGFR signaling in polarized epithelial cells. Herein, we show that the EGFR ligand betacellulin (BTC) is preferentially sorted to the basolateral surface of polarized MDCK cells. By using sequential truncations and site-directed mutagenesis within the BTC cytoplasmic domain, combined with selective cell-surface biotinylation and immunofluorescence, we have uncovered a monoleucine-based basolateral-sorting motif (EExxxL, specifically (156)EEMETL(161)). Disruption of this sorting motif led to equivalent apical and basolateral localization of BTC. Unlike other EGFR ligands, BTC mistrafficking induced formation of lateral lumens in polarized MDCK cells, and this process was significantly attenuated by inhibition of EGFR. Additionally, expression of a cancer-associated somatic BTC mutation (E156K) led to BTC mistrafficking and induced lateral lumens in MDCK cells. Overexpression of BTC, especially mistrafficking forms, increased the growth of MDCK cells. These results uncover a unique role for BTC mistrafficking in promoting epithelial reorganization.


Assuntos
Betacelulina , Polaridade Celular , Sequência de Aminoácidos , Animais , Betacelulina/genética , Betacelulina/metabolismo , Cães , Família de Proteínas EGF , Receptores ErbB/genética , Receptores ErbB/metabolismo , Imunofluorescência , Células Madin Darby de Rim Canino , Mutação , Sinais Direcionadores de Proteínas/genética , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...