Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 179: 115879, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32388046

RESUMO

Both multi-walled carbon nanotubes (MWCNTs) and metal or metal oxides have demonstrated virus removal efficacy in drinking water applications. In this study, MWCNTs were coated with copper(I) oxide (Cu2O) using three distinct synthesis procedures (copper ion attachment, copper hydroxide precipitation, and [Cu(NH3)4]2+ complex attachment) and virus removal efficacy (using MS2 bacteriophages) was evaluated. All synthesis procedures resulted in the presence of adsorbed, nanosized Cu2O particles on the MWCNTs, shown using X-ray diffraction. Further, transmission electron microscopy confirmed uniform copper(I) oxide distribution along the MWCNTs for all three materials. Virus removal efficacy was assessed for all three synthesised composites both before and after material conditioning (filtering for at least 24 h/280 mL/h), and accounting for additional MS2 inactivation in the permeate due to continued copper inactivation from dissolved/desorbed copper in permeate (time-control). Material conditioning influenced virus removal, with the first litres of water containing higher concentrations of copper than the sixth litres of water, suggesting excess or non-bonded copper species dissolve from filters. Higher copper dissolution was observed for water at pH 5 than at pH 7, which decreased with time. Copper dissolution most likely caused an associated decrease in copper adsorbed to MWCNTs in the filters, which may explain the observed lower MS2 removal efficacy after conditioning. Additionally, the time-control study (immediately after filtration as compared to 2 h after filtration) highlighted continued MS2 inactivation in the permeate over time. The obtained results indicate that the synthesis procedure influences virus removal efficacy for MWCNTs coated with copper oxides and that virus removal is likely due to not only virus electrostatic adsorption to the coated MWCNTs, but also through antiviral properties of copper which continues to act in the permeate. In conclusion, it is highly important to revise the methods of testing filter materials for virus removal, as well as procedure for virus concentration evaluation.


Assuntos
Nanotubos de Carbono , Purificação da Água , Adsorção , Filtração , Água
2.
Water Res ; 64: 177-186, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25058736

RESUMO

This study investigated the influence of inorganic particles on the hydraulic resistance of biofilm grown on membrane surface during low-pressure dead-end ultrafiltration. Gravity-driven ultrafiltration membrane systems were operated during several weeks without any flushing or cleaning. Smaller (kaolin d0.5 = 3.6 µm) or larger (kaolin with diatomaceous earth 50/50%, d0.5 = 18.1 µm) particles were added to pre-filtered creek water or to unfiltered creek water. It was demonstrated in both experiments that presence of finer particles in the feed water (kaolin) induced formation of compact and homogeneous biofilm structure. On the other hand presence of the larger particles (diatomite) helped to counterbalance the effect of fine particles due to the formation of more heterogeneous and permeable biofilm structure. The hydraulic resistance of biofilms formed with fine particles was significantly higher than the resistance of biofilm formed in (1) absence of any inorganic particles or (2) in presence of the mixed particle population. The membrane orientation (vertical or horizontal) determined which particles were accumulating at the membrane surface, with structural differences shown by Scanning Electron Microscopy (SEM). For vertical membranes, the larger particles were selectively removed due to sedimentation and did not contribute to the biofilm development. Thus the selection of smaller particles due to vertical membrane configuration negatively affected the biofilm structure and permeation rates, and such selective accumulation of fine particles should be avoided.


Assuntos
Biofilmes , Membranas Artificiais , Ultrafiltração , Purificação da Água , Terra de Diatomáceas , Caulim , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Permeabilidade , Pressão , Ultrafiltração/instrumentação
3.
Anal Chem ; 84(6): 2678-85, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22304567

RESUMO

Due to the already prevalent and increasing use of silver-nanoparticle (Ag-NP) products and the raised concerns in particular for the aquatic environment, analytical techniques for the characterization of such products are of need. However, because Ag-NP products are of different compositions and polydispersities, analysis especially of the size distribution is challenging. In this work, an asymmetric flow field flow fractionation (A4F) multidetector system (UV/vis, light scattering, inductively coupled plasma mass spectrometry - ICPMS), in combination with a method to distinguish and quantify the particle and dissolved Ag fractions (ICPMS after ultracentrifugation), for the characterization of Ag-NP products with different degrees of polydispersities is presented. For validation and to outline benefits and limitations, results obtained from batch dynamic light scattering (batch-DLS) and transmission electron microscopy (TEM) were compared. With the developed method a comprehensive understanding in terms of dissolved Ag and Ag-NP concentration as well as an element selective, mass- and number particle size distribution (PSD) was obtained. In relation to batch-DLS, the reliability of the data was improved significantly. In comparison to TEM, faster measurement times and the ability to determine the samples directly in dispersions are clearly advantageous. The proposed setup shows potential for a rapid- and reliable characterization method of virtually any polydisperse metallic NP dispersion, many of them available on the market already.

4.
Environ Pollut ; 156(2): 233-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18824285

RESUMO

We present direct evidence of the release of synthetic nanoparticles from urban applications into the aquatic environment. We investigated TiO(2) particles as these particles are used in large quantities in exterior paints as whitening pigments and are to some extent also present in the nano-size range. TiO(2) particles were traced from exterior facade paints to the discharge into surface waters. We used a centrifugation based sample preparation which recovers TiO(2) particles between roughly 20 and 300nm. Analytical electron microscopy revealed that TiO(2) particles are detached from new and aged facade paints by natural weather conditions and are then transported by facade runoff and are discharged into natural, receiving waters. Microscopic investigations are confirmed by bulk chemical analysis. By combining results from microscopic investigations with bulk chemical analysis we calculated the number densities of synthetic TiO(2) particles in the runoff.


Assuntos
Materiais de Construção/análise , Nanopartículas/análise , Pintura , Titânio/análise , Poluentes Químicos da Água/análise , Cidades , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Material Particulado , Chuva/química , Tempo , Movimentos da Água
5.
Water Res ; 42(10-11): 2778-86, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18348895

RESUMO

In this paper we comprehensively characterized particles in drinking water originating from a lake water source. We focused on particles smaller than a few hundred nm. Several analytical techniques were applied to obtain information on number concentration, size distribution, morphology and chemical composition of the particles. Morphological information was obtained by atomic force microscopy (AFM) analysis. Two types of particles, spherical aggregates up to a few tens of nm and elongated fibers were identified. Similar structures were also observed in transmission electron microscope (TEM) images. A size distribution of the particles was obtained by applying image analysis (IA) tools on the TEM images. IA results showed an exponential increase of the particle number concentration down to 40 nm, which is the lower detection limit of our setup. The total number of particles down to 10 nm and the average particle diameter were determined with the laser-induced breakdown detection (LIBD) method. The results were in good agreement with the TEM-IA data and showed a total number concentration of roughly 10(8) particles/mL in the purified water. The carbon of the particles was investigated with scanning transmission X-ray microscopy (STXM), which revealed that most particles were organic matter; the C-1s spectra were typical for dissolved organic matter. The methods were applied to characterize the particles from two different drinking waters treated with different methods (conventional vs. ultrafiltration (cut-off 100 kDa)). The results showed that the particle number density following ultrafiltration was lower by a factor of 5-10, compared to conventional treatment. However, the average particle diameter in the finished water of both treatment trains was roughly the same.


Assuntos
Lasers , Nanopartículas/análise , Nanopartículas/química , Tamanho da Partícula , Purificação da Água/métodos , Abastecimento de Água , Microscopia , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...