Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thromb Res ; 218: 112-129, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037547

RESUMO

The collagen receptor glycoprotein VI (GPVI) drives strong platelet activation, however its role at later stages of clotting remains less clear. Controlled timing of addition of anti-human GPVI Fab (clone E12) with microfluidic venous whole blood flow over collagen (± lipidated tissue factor, TF) produced distinct effects on platelets, fibrin, P-selectin exposure, and phosphatidylserine (PS) exposure. On collagen alone, Fab present initially potently reduced platelet deposition on collagen, while Fab added 90 s after initial platelet deposition, stopped subsequent platelet accumulation (despite the absence of fibrin). With thrombin generation via TF, Fab added at either t = 0 or 90 s had no effect on platelet deposition. However, Fab added initially, but not at 90-s, blocked fibrin formation. Gly-Pro-Arg-Pro ablated fibrin formation without effect on platelet accumulation (regardless of Fab added at t = 0 or 90 s), indicating thrombin signaling can suffice over GPVI signaling. Still, Fab moderately reduced P-selectin exposure with thrombin present and fibrin absent. On collagen/TF, Fab present initially ablated PS exposure, but had no effect when added 30 to 90-s later. The thrombin generated via PS exposure had an important role in driving platelet deposition in the presence of Fab, since inhibition of PS via annexin V binding in the presence of Fab significantly inhibited platelet deposition. We conclude GPVI signaling in the first platelet layer on collagen dictates thrombin and fibrin production, but the role of GPVI at subsequent times after formation of the first monolayer is obscured by thrombin-induced signaling.


Assuntos
Trombina , Tromboplastina , Anexina A5 , Colágeno/metabolismo , Colágeno/farmacologia , Fibrina/metabolismo , Humanos , Microfluídica , Selectina-P/metabolismo , Fosfatidilserinas , Glicoproteínas da Membrana de Plaquetas , Receptores de Colágeno/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo
2.
J Thromb Haemost ; 16(5): 973-983, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29488682

RESUMO

Essentials Platelet packing density in a hemostatic plug limits molecular movement to diffusion. A diffusion-dependent steep thrombin gradient forms radiating outwards from the injury site. Clot retraction affects the steepness of the gradient by increasing platelet packing density. Together, these effects promote hemostatic plug core formation and inhibit unnecessary growth. SUMMARY: Background Hemostasis studies performed in vivo have shown that hemostatic plugs formed after penetrating injuries are characterized by a core of highly activated, densely packed platelets near the injury site, covered by a shell of less activated and loosely packed platelets. Thrombin production occurs near the injury site, further activating platelets and starting the process of platelet mass retraction. Tightening of interplatelet gaps may then prevent the escape and exchange of solutes. Objectives To reconstruct the hemostatic plug macro- and micro-architecture and examine how platelet mass contraction regulates solute transport and solute concentration in the gaps between platelets. Methods Our approach consisted of three parts. First, platelet aggregates formed in vitro under flow were analyzed using scanning electron microscopy to extract data on porosity and gap size distribution. Second, a three-dimensional (3-D) model was constructed with features matching the platelet aggregates formed in vitro. Finally, the 3-D model was integrated with volume and morphology measurements of hemostatic plugs formed in vivo to determine how solutes move within the platelet plug microenvironment. Results The results show that the hemostatic mass is characterized by extremely narrow gaps, porosity values even smaller than previously estimated and stagnant plasma velocity. Importantly, the concentration of a chemical species released within the platelet mass increases as the gaps between platelets shrink. Conclusions Platelet mass retraction provides a physical mechanism to establish steep chemical concentration gradients that determine the extent of platelet activation and account for the core-and-shell architecture observed in vivo.


Assuntos
Músculos Abdominais/irrigação sanguínea , Arteríolas/lesões , Plaquetas/metabolismo , Hemostasia , Agregação Plaquetária , Trombina/metabolismo , Trombose/sangue , Lesões do Sistema Vascular/sangue , Animais , Arteríolas/patologia , Arteríolas/fisiopatologia , Velocidade do Fluxo Sanguíneo , Plaquetas/patologia , Retração do Coágulo , Simulação por Computador , Difusão , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microcirculação , Modelos Biológicos , Porosidade , Trombose/patologia , Trombose/fisiopatologia , Fatores de Tempo , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...