Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6919, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106122

RESUMO

In this paper we present an infrared laser pointer, consisting of a vertical-cavity surface-emitting laser (VCSEL) and a diffractive optical element (DOE), encapsulated into a scleral contact lens (SCL). The VCSEL is powered remotely by inductive coupling from a primary antenna embedded into an eyewear frame. The DOE is used either to collimate the laser beam or to project a pattern image at a chosen distance in front of the eye. We detail the different SCL constitutive blocks, how they are manufactured and assembled. We particularly emphasize the various technological challenges related to their encapsulation in the reduced volume of the SCL, while keeping the pupil free. Finally, we describe how the laser pointer operates, what are its performances (e.g. collimation, image formation) and how it can be used efficiently in various application fields such as visual assistance and augmented reality.

2.
Sci Rep ; 10(1): 8740, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457310

RESUMO

Two-photon polymerization (TPP) is capable of fabricating 3D structures with dimensions from sub-µm to a few hundred µm. As a direct laser writing (DLW) process, fabrication time of 3D TPP structures scale with the third order, limiting its use in large volume fabrication. Here, we report on a scalable fabrication method that cuts fabrication time to a fraction. A parallelized 9 multi-beamlets DLW process, created by a fixed diffraction optical element (DOE) and subsequent stitching are used to fabricate large periodic high aspect ratio 3D microstructured arrays with sub-micron features spanning several hundred of µm2. The wall structure in the array is designed with a minimum of traced lines and is created by a low numerical aperture (NA) microscope objective, leading to self-supporting lines omitting the need for line-hatching. The fabricated periodic arrays are applied in a cell - 3D microstructure interaction study using living HeLa cells. First indications of increased cell proliferation in the presence of 3D microstructures compared to planar surfaces are obtained. Furthermore, the cells adopt an elongated morphology when attached to the 3D microstructured surfaces. Both results constitute promising findings rendering the 3D microstructures a suited tool for cell interaction experiments, e.g. for cell migration, separation or even tissue engineering studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...