Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4961, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862514

RESUMO

Phases with spontaneous time-reversal ( T ) symmetry breaking are sought after for their anomalous physical properties, low-dissipation electronic and spin responses, and information-technology applications. Recently predicted altermagnetic phase features an unconventional and attractive combination of a strong T -symmetry breaking in the electronic structure and a zero or only weak-relativistic magnetization. In this work, we experimentally observe the anomalous Hall effect, a prominent representative of the T -symmetry breaking responses, in the absence of an external magnetic field in epitaxial thin-film Mn5Si3 with a vanishingly small net magnetic moment. By symmetry analysis and first-principles calculations we demonstrate that the unconventional d-wave altermagnetic phase is consistent with the experimental structural and magnetic characterization of the Mn5Si3 epilayers, and that the theoretical anomalous Hall conductivity generated by the phase is sizable, in agreement with experiment. An analogy with unconventional d-wave superconductivity suggests that our identification of a candidate of unconventional d-wave altermagnetism points towards a new chapter of research and applications of magnetic phases.

2.
Nat Commun ; 15(1): 2116, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459058

RESUMO

Altermagnetism represents an emergent collinear magnetic phase with compensated order and an unconventional alternating even-parity wave spin order in the non-relativistic band structure. We investigate directly this unconventional band splitting near the Fermi energy through spin-integrated soft X-ray angular resolved photoemission spectroscopy. The experimentally obtained angle-dependent photoemission intensity, acquired from epitaxial thin films of the predicted altermagnet CrSb, demonstrates robust agreement with the corresponding band structure calculations. In particular, we observe the distinctive splitting of an electronic band on a low-symmetry path in the Brilliouin zone that connects two points featuring symmetry-induced degeneracy. The measured large magnitude of the spin splitting of approximately 0.6 eV and the position of the band just below the Fermi energy underscores the significance of altermagnets for spintronics based on robust broken time reversal symmetry responses arising from exchange energy scales, akin to ferromagnets, while remaining insensitive to external magnetic fields and possessing THz dynamics, akin to antiferromagnets.

3.
Nat Commun ; 15(1): 1641, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409221

RESUMO

The ever-growing demand for device miniaturization and energy efficiency in data storage and computing technology has prompted a shift towards antiferromagnetic topological spin textures as information carriers. This shift is primarily owing to their negligible stray fields, leading to higher possible device density and potentially ultrafast dynamics. We realize in this work such chiral in-plane topological antiferromagnetic spin textures namely merons, antimerons, and bimerons in synthetic antiferromagnets by concurrently engineering the effective perpendicular magnetic anisotropy, the interlayer exchange coupling, and the magnetic compensation ratio. We demonstrate multimodal vector imaging of the three-dimensional Néel order parameter, revealing the topology of those spin textures and a globally well-defined chirality, which is a crucial requirement for controlled current-induced dynamics. Our analysis reveals that the interplay between interlayer exchange and interlayer magnetic dipolar interactions plays a key role to significantly reduce the critical strength of the Dzyaloshinskii-Moriya interaction required to stabilize topological spin textures, such as antiferromagnetic merons, in synthetic antiferromagnets, making them a promising platform for next-generation spintronics applications.

4.
Phys Rev Lett ; 132(5): 056701, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364129

RESUMO

We demonstrate the emergence of a pronounced thermal transport in the recently discovered class of magnetic materials-altermagnets. From symmetry arguments and first-principles calculations performed for the showcase altermagnet, RuO_{2}, we uncover that crystal Nernst and crystal thermal Hall effects in this material are very large and strongly anisotropic with respect to the Néel vector. We find the large crystal thermal transport to originate from three sources of Berry's curvature in momentum space: the Weyl fermions due to crossings between well-separated bands, the strong spin-flip pseudonodal surfaces, and the weak spin-flip ladder transitions, defined by transitions among very weakly spin-split states of similar dispersion crossing the Fermi surface. Moreover, we reveal that the anomalous thermal and electrical transport coefficients in RuO_{2} are linked by an extended Wiedemann-Franz law in a temperature range much wider than expected for conventional magnets. Our results suggest that altermagnets may assume a leading role in realizing concepts in spin caloritronics not achievable with ferromagnets or antiferromagnets.

5.
Nat Commun ; 15(1): 822, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280875

RESUMO

Resistivity measurements are widely exploited to uncover electronic excitations and phase transitions in metallic solids. While single crystals are preferably studied to explore crystalline anisotropies, these usually cancel out in polycrystalline materials. Here we show that in polycrystalline Mn3Zn0.5Ge0.5N with non-collinear antiferromagnetic order, changes in the diagonal and, rather unexpected, off-diagonal components of the resistivity tensor occur at low temperatures indicating subtle transitions between magnetic phases of different symmetry. This is supported by neutron scattering and explained within a phenomenological model which suggests that the phase transitions in magnetic field are associated with field induced topological orbital momenta. The fact that we observe transitions between spin phases in a polycrystal, where effects of crystalline anisotropy are cancelled suggests that they are only controlled by exchange interactions. The observation of an off-diagonal resistivity extends the possibilities for realising antiferromagnetic spintronics with polycrystalline materials.

6.
Sci Adv ; 10(5): eadj4883, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295181

RESUMO

Altermagnets are an emerging elementary class of collinear magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of time-reversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature of altermagnetism but has not been experimentally visualized to date. We directly observe strong time-reversal symmetry breaking in the band structure of altermagnetic RuO2 by detecting magnetic circular dichroism in angle-resolved photoemission spectra. Our experimental results, supported by ab initio calculations, establish the microscopic electronic structure basis for a family of interesting phenomena and functionalities in fields ranging from topological matter to spintronics, which are based on the unconventional time-reversal symmetry breaking in altermagnets.

7.
Phys Rev Lett ; 131(4): 046701, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566862

RESUMO

We investigate magnetization dynamics of Mn_{2}Au/Py (Ni_{80}Fe_{20}) thin film bilayers using broadband ferromagnetic resonance (FMR) and Brillouin light scattering spectroscopy. Our bilayers exhibit two resonant modes with zero-field frequencies up to almost 40 GHz, far above the single-layer Py FMR. Our model calculations attribute these modes to the coupling of the Py FMR and the two antiferromagnetic resonance (AFMR) modes of Mn_{2}Au. The coupling strength is in the order of 1.6 T nm at room temperature for nm-thick Py. Our model reveals the dependence of the hybrid modes on the AFMR frequencies and interfacial coupling as well as the evanescent character of the spin waves that extend across the Mn_{2}Au/Py interface.

8.
Phys Rev Lett ; 131(25): 256703, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181333

RESUMO

Magnons in ferromagnets have one chirality, and typically are in the GHz range and have a quadratic dispersion near the zero wave vector. In contrast, magnons in antiferromagnets are commonly considered to have bands with both chiralities that are degenerate across the entire Brillouin zone, and to be in the THz range and to have a linear dispersion near the center of the Brillouin zone. Here we theoretically demonstrate a new class of magnons on a prototypical d-wave altermagnet RuO_{2} with the compensated antiparallel magnetic order in the ground state. Based on density-functional-theory calculations we observe that the THz-range magnon bands in RuO_{2} have an alternating chirality splitting, similar to the alternating spin splitting of the electronic bands, and a linear magnon dispersion near the zero wave vector. We also show that, overall, the Landau damping of this metallic altermagnet is suppressed due to the spin-split electronic structure, as compared to an artificial antiferromagnetic phase of the same RuO_{2} crystal with spin-degenerate electronic bands and chirality-degenerate magnon bands.

9.
Nat Commun ; 13(1): 724, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132068

RESUMO

Efficient manipulation of antiferromagnetic (AF) domains and domain walls has opened up new avenues of research towards ultrafast, high-density spintronic devices. AF domain structures are known to be sensitive to magnetoelastic effects, but the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning X-ray diffraction imaging and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects. We demonstrate that microtwin defects, which develop across the entire thickness of the film and terminate on the surface as characteristic lines, determine the location and orientation of 180∘ and 90∘ domain walls. The results emphasize the crucial role of nanoscale crystalline defects in determining the AF domains and domain walls, and provide a route to optimizing device performance.

10.
Phys Rev Lett ; 126(12): 127701, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33834809

RESUMO

Spin-current generation by electrical means is among the core phenomena driving the field of spintronics. Using ab initio calculations we show that a room-temperature metallic collinear antiferromagnet RuO_{2} allows for highly efficient spin-current generation, arising from anisotropically spin-split bands with conserved up and down spins along the Néel vector axis. The zero net moment antiferromagnet acts as an electrical spin splitter with a 34° propagation angle between spin-up and spin-down currents. The corresponding spin conductivity is a factor of 3 larger than the record value from a survey of 20 000 nonmagnetic spin-Hall materials. We propose a versatile spin-splitter-torque concept circumventing limitations of spin-transfer and spin-orbit torques in present magnetic memory devices.

11.
Nano Lett ; 21(1): 114-119, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33306407

RESUMO

We unravel the origin of current-induced magnetic switching of insulating antiferromagnet/heavy metal systems. We utilize concurrent transport and magneto-optical measurements to image the switching of antiferromagnetic domains in specially engineered devices of NiO/Pt bilayers. Different electrical pulsing and device geometries reveal different final states of the switching with respect to the current direction. We can explain these through simulations of the temperature-induced strain, and we identify the thermomagnetoelastic switching mechanism combined with thermal excitations as the origin, in which the final state is defined by the strain distributions and heat is required to switch the antiferromagnetic domains. We show that such a potentially very versatile noncontact mechanism can explain the previously reported contradicting observations of the switching final state, which were attributed to spin-orbit torque mechanisms.

12.
Nat Mater ; 20(1): 30-37, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33020615

RESUMO

Topological states of matter exhibit fascinating physics combined with an intrinsic stability. A key challenge is the fast creation of topological phases, which requires massive reorientation of charge or spin degrees of freedom. Here we report the picosecond emergence of an extended topological phase that comprises many magnetic skyrmions. The nucleation of this phase, followed in real time via single-shot soft X-ray scattering after infrared laser excitation, is mediated by a transient topological fluctuation state. This state is enabled by the presence of a time-reversal symmetry-breaking perpendicular magnetic field and exists for less than 300 ps. Atomistic simulations indicate that the fluctuation state largely reduces the topological energy barrier and thereby enables the observed rapid and homogeneous nucleation of the skyrmion phase. These observations provide fundamental insights into the nature of topological phase transitions, and suggest a path towards ultrafast topological switching in a wide variety of materials through intermediate fluctuating states.

13.
Phys Rev Lett ; 124(2): 027204, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004034

RESUMO

There is a growing interest in utilizing the distinctive material properties of organic semiconductors for spintronic applications. Here, we explore the injection of pure spin current from Permalloy into a small molecule system based on dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) at ferromagnetic resonance. The unique tunability of organic materials by molecular design allows us to study the impact of interfacial properties on the spin injection efficiency systematically. We show that both the spin injection efficiency at the interface and the spin diffusion length can be tuned sensitively by the interfacial molecular structure and side chain substitution of the molecule.

14.
Nano Lett ; 20(1): 306-313, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31809058

RESUMO

The compensated magnetic order and characteristic terahertz frequencies of antiferromagnetic materials make them promising candidates to develop a new class of robust, ultrafast spintronic devices. The manipulation of antiferromagnetic spin-waves in thin films is anticipated to lead to new exotic phenomena such as spin-superfluidity, requiring an efficient propagation of spin-waves in thin films. However, the reported decay length in thin films has so far been limited to a few nanometers. In this work, we achieve efficient spin-wave propagation over micrometer distances in thin films of the insulating antiferromagnet hematite with large magnetic domains while evidencing much shorter attenuation lengths in multidomain thin films. Through transport and magnetic imaging, we determine the role of the magnetic domain structure and spin-wave scattering at domain walls to govern the transport. We manipulate the spin transport by tailoring the domain configuration through field cycle training. For the appropriate crystalline orientation, zero-field spin transport is achieved across micrometers, as required for device integration.

15.
Nat Commun ; 10(1): 3965, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481651

RESUMO

In symmetry-broken crystalline solids, pole structures of Berry curvature (BC) can emerge, and they have been utilized as a versatile tool for controlling transport properties. For example, the monopole component of the BC is induced by the time-reversal symmetry breaking, and the BC dipole arises from a lack of inversion symmetry, leading to the anomalous Hall and nonlinear Hall effects, respectively. Based on first-principles calculations, we show that the ferroelectricity in a tin telluride monolayer produces a unique BC distribution, which offers charge- and spin-controllable photocurrents. Even with the sizable band gap, the ferroelectrically driven BC dipole is comparable to those of small-gap topological materials. By manipulating the photon handedness and the ferroelectric polarization, charge and spin circular photogalvanic currents are generated in a controllable manner. The ferroelectricity in group-IV monochalcogenide monolayers can be a useful tool to control the BC dipole and the nonlinear optoelectronic responses.

16.
Nat Commun ; 9(1): 2198, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29855471

RESUMO

The original version of this Article had an incorrect Received date of 21 November 2016; it should have been 21 November 2017. This has been corrected in the PDF and HTML versions of the Article.

17.
Sci Adv ; 4(3): eaar3566, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29740601

RESUMO

The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the path toward the development of memory-logic technology reaching the elusive terahertz band.

18.
Nat Commun ; 9(1): 1089, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540718

RESUMO

Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y3Fe5O12|CoO|Co, we find that the detection amplitude of spin currents emitted by ferromagnetic resonance spin pumping depends on the relative alignment of the Y3Fe5O12 and Co magnetization. This yields a spin valve-like behavior with an amplitude change of 120% in our systems. We demonstrate the reliability of the effect and identify its origin by both temperature-dependent and power-dependent measurements.

19.
Nat Commun ; 9(1): 1015, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523833

RESUMO

Skyrmions are topologically protected non-collinear magnetic structures. Their stability is ideally suited to carry information in, e.g., racetrack memories. The success of such a memory critically depends on the ability to stabilize and manipulate skyrmions at low magnetic fields. The non-collinear Dzyaloshinskii-Moriya interaction originating from spin-orbit coupling drives skyrmion formation. It competes with Heisenberg exchange and magnetic anisotropy favoring collinear states. Isolated skyrmions in ultra-thin films so far required magnetic fields as high as several Tesla. Here, we show that isolated skyrmions in a monolayer of Co/Ru(0001) can be stabilized down to vanishing fields. Even with the weak spin-orbit coupling of the 4d element Ru, homochiral spin spirals and isolated skyrmions were detected with spin-sensitive scanning tunneling microscopy. Density functional theory calculations explain the stability of the chiral magnetic features by the absence of magnetic anisotropy energy.

20.
Phys Rev Lett ; 119(2): 027201, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28753347

RESUMO

A recent experiment indicated that a ferromagnetic EuS film in contact with a topological insulator Bi_{2}Se_{3} might show a largely enhanced Curie temperature and perpendicular magnetic anisotropy [F. Katmis et al., Nature (London) 533, 513 (2016).NATUAS0028-083610.1038/nature17635]. Through systematic density functional calculations, we demonstrate that in addition to the factor that Bi_{2}Se_{3} has a strong spin orbit coupling, the topological surface states are crucial to make these unusual behaviors robust as they hybridize with EuS states and extend rather far into the magnetic layers. The magnetic moments of Eu atoms are nevertheless not much enhanced, unlike what was reported in the experiment. Our results and model analyses provide useful insights for how these quantities are linked, and pave a way for the control of properties of magnetic films via contact with topological insulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...