Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38870029

RESUMO

Leigh syndrome is the most common inherited mitochondrial disease in children and is often fatal within the first few years of life. In 2020, mutations in the gene encoding sulfide:quinone oxidoreductase (SQOR), a mitochondrial protein, were identified as a cause of Leigh syndrome. Here, we report that mice with a mutation in the gene encoding SQOR (SqorΔN/ΔN mice), which prevented SQOR from entering mitochondria, had clinical and pathological manifestations of Leigh syndrome. SqorΔN/ΔN mice had increased blood lactate levels that were associated with markedly decreased complex IV activity and increased hydrogens sulfide (H2S) levels. Because H2S is produced by both gut microbiota and host tissue, we tested whether metronidazole (a broad-spectrum antibiotic) or a sulfur-restricted diet rescues SqorΔN/ΔN mice from developing Leigh syndrome. Daily treatment with metronidazole alleviated increased H2S levels, normalized complex IV activity and blood lactate levels, and prolonged the survival of SqorΔN/ΔN mice. Similarly, a sulfur-restricted diet normalized blood lactate levels and inhibited the development of Leigh syndrome. Taken together, these observations suggest that mitochondrial SQOR is essential to prevent systemic accumulation of H2S. Administration of metronidazole or a sulfur-restricted diet may be therapeutic approaches to treatment of patients with Leigh syndrome caused by mutations in SQOR.

3.
PLoS One ; 18(3): e0282496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36877681

RESUMO

Messenger RNA processing bodies (P-bodies) are cytoplasmic membrane-free organelles that contain proteins involved in mRNA silencing, storage and decay. The mechanism by which P-body components interact and the factors that regulate the stability of these structures are incompletely understood. In this study, we used a fluorescence-based, two-hybrid assay to investigate interactions between P-body components that occur inside the cell. LSm14a, PATL1, XRN1, and NBDY were found to interact with the N-terminal, WD40-domain-containing portion of EDC4. The N-terminus of full-length PATL1 was required to mediate the interaction between EDC4 and DDX6. The C-terminal, alpha helix-domain- containing portion of EDC4 was sufficient to mediate interaction with DCP1a and CCHCR1. In the absence of endogenous P-bodies, caused by depletion of LSm14a or DDX6, expression of the portion of EDC4 that lacked the N-terminus retained the ability to form cytoplasmic dots that were indistinguishable from P-bodies at the level of UV light microscopy. Despite the absence of endogenous P-bodies, this portion of EDC4 was able to recruit DCP1a, CCHCR1 and EDC3 to cytoplasmic dots. The results of this study permit the development of a new model of P-body formation and suggest that the N-terminus of EDC4 regulates the stability of these structures.


Assuntos
Mamíferos , Corpos de Processamento , Animais , Membrana Celular , Citoplasma , Citosol , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...