Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS Biol ; 21(11): e3002389, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983289

RESUMO

The meningeal space is a critical brain structure providing immunosurveillance for the central nervous system (CNS), but the impact of infections on the meningeal immune landscape is far from being fully understood. The extracellular protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis (HAT) or sleeping sickness, accumulates in the meningeal spaces, ultimately inducing severe meningitis and resulting in death if left untreated. Thus, sleeping sickness represents an attractive model to study immunological dynamics in the meninges during infection. Here, by combining single-cell transcriptomics and mass cytometry by time-of-flight (CyTOF) with in vivo interventions, we found that chronic T. brucei infection triggers the development of ectopic lymphoid aggregates (ELAs) in the murine meninges. These infection-induced ELAs were defined by the presence of ER-TR7+ fibroblastic reticular cells, CD21/35+ follicular dendritic cells (FDCs), CXCR5+ PD1+ T follicular helper-like phenotype, GL7+ CD95+ GC-like B cells, and plasmablasts/plasma cells. Furthermore, the B cells found in the infected meninges produced high-affinity autoantibodies able to recognise mouse brain antigens, in a process dependent on LTß signalling. A mid-throughput screening identified several host factors recognised by these autoantibodies, including myelin basic protein (MBP), coinciding with cortical demyelination and brain pathology. In humans, we identified the presence of autoreactive IgG antibodies in the cerebrospinal fluid (CSF) of second stage HAT patients that recognised human brain lysates and MBP, consistent with our findings in experimental infections. Lastly, we found that the pathological B cell responses we observed in the meninges required the presence of T. brucei in the CNS, as suramin treatment before the onset of the CNS stage prevented the accumulation of GL7+ CD95+ GC-like B cells and brain-specific autoantibody deposition. Taken together, our data provide evidence that the meningeal immune response during chronic T. brucei infection results in the acquisition of lymphoid tissue-like properties, broadening our understanding of meningeal immunity in the context of chronic infections. These findings have wider implications for understanding the mechanisms underlying the formation ELAs during chronic inflammation resulting in autoimmunity in mice and humans, as observed in other autoimmune neurodegenerative disorders, including neuropsychiatric lupus and multiple sclerosis.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Humanos , Animais , Camundongos , Infecção Persistente , Meninges/metabolismo , Tecido Linfoide/metabolismo , Autoanticorpos
3.
Nat Commun ; 14(1): 7070, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923768

RESUMO

In the skin, Trypanosoma brucei colonises the subcutaneous white adipose tissue, and is proposed to be competent for forward transmission. The interaction between parasites, adipose tissue, and the local immune system is likely to drive the adipose tissue wasting and weight loss observed in cattle and humans infected with T. brucei. However, mechanistically, events leading to subcutaneous white adipose tissue wasting are not fully understood. Here, using several complementary approaches, including mass cytometry by time of flight, bulk and single cell transcriptomics, and in vivo genetic models, we show that T. brucei infection drives local expansion of several IL-17A-producing cells in the murine WAT, including TH17 and Vγ6+ cells. We also show that global IL-17 deficiency, or deletion of the adipocyte IL-17 receptor protect from infection-induced WAT wasting and weight loss. Unexpectedly, we find that abrogation of adipocyte IL-17 signalling results in a significant accumulation of Dpp4+ Pi16+ interstitial preadipocytes and increased extravascular parasites in the WAT, highlighting a critical role for IL-17 signalling in controlling preadipocyte fate, subcutaneous WAT dynamics, and local parasite burden. Taken together, our study highlights the central role of adipocyte IL-17 signalling in controlling WAT responses to infection, suggesting that adipocytes are critical coordinators of tissue dynamics and immune responses to T. brucei infection.


Assuntos
Parasitos , Trypanosoma brucei brucei , Humanos , Camundongos , Animais , Bovinos , Interleucina-17 , Tecido Adiposo , Gordura Subcutânea , Tecido Adiposo Branco , Caquexia
4.
F1000Res ; 12: 437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588058

RESUMO

Background: Sleeping sickness is caused by the extracellular parasite Trypanosoma brucei and is associated with neuroinflammation and neuropsychiatric disorders, including disruption of sleep/wake patterns, and is now recognised as a circadian disorder. Sleeping sickness is traditionally studied using murine models of infection due to the lack of alternative in vitro systems that fully recapitulate the cellular diversity and functionality of the human brain. The aim of this study is to develop a much-needed in vitro system that reduces and replaces live animals for the study of infections in the central nervous system, using sleeping sickness as a model infection. Methods: We developed a co-culture system using induced pluripotent stem cell (iPSC)-derived cortical human brain organoids and the human pathogen T. b. gambiense to model host-pathogen interactions in vitro. Upon co-culture, we analysed the transcriptional responses of the brain organoids to T. b. gambiense over two time points. Results: We detected broad transcriptional changes in brain organoids exposed to T. b. gambiense, mainly associated with innate immune responses, chemotaxis, and blood vessel differentiation compared to untreated organoids. Conclusions: Our co-culture system provides novel, more ethical avenues to study host-pathogen interactions in the brain as alternative models to experimental infections in mice. Although our data support the use of brain organoids to model host-pathogen interactions during T. brucei infection as an alternative to in vivo models, future work is required to increase the complexity of the organoids ( e.g., addition of microglia and vasculature). We envision that the adoption of organoid systems is beneficial to researchers studying mechanisms of brain infection by protozoan parasites. Furthermore, organoid systems have the potential to be used to study other parasites that affect the brain significantly reducing the number of animals undergoing moderate and/or severe protocols associated with the study of neuroinflammation and brain infections.


Assuntos
Células-Tronco Pluripotentes Induzidas , Tripanossomíase Africana , Humanos , Animais , Camundongos , Trypanosoma brucei gambiense , Doenças Neuroinflamatórias , Encéfalo , Organoides
5.
Nat Commun ; 14(1): 5279, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644007

RESUMO

African trypanosomes colonise the skin to ensure parasite transmission. However, how the skin responds to trypanosome infection remains unresolved. Here, we investigate the local immune response of the skin in a murine model of infection using spatial and single cell transcriptomics. We detect expansion of dermal IL-17A-producing Vγ6+ cells during infection, which occurs in the subcutaneous adipose tissue. In silico cell-cell communication analysis suggests that subcutaneous interstitial preadipocytes trigger T cell activation via Cd40 and Tnfsf18 signalling, amongst others. In vivo, we observe that female mice deficient for IL-17A-producing Vγ6+ cells show extensive inflammation and limit subcutaneous adipose tissue wasting, independently of parasite burden. Based on these observations, we propose that subcutaneous adipocytes and Vγ6+ cells act in concert to limit skin inflammation and adipose tissue wasting. These studies provide new insights into the role of γδ T cell and subcutaneous adipocytes as homeostatic regulators of skin immunity during chronic infection.


Assuntos
Dermatite , Trypanosoma brucei brucei , Feminino , Animais , Camundongos , Interleucina-17 , Infecção Persistente , Adiposidade , Obesidade , Caquexia , Inflamação
6.
Cells ; 12(12)2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371074

RESUMO

The liver performs a multitude of bodily functions, whilst retaining the ability to regenerate damaged tissue. In this review, we discuss sex steroid biology, regulation of mammalian liver physiology and the development of new model systems to improve our understanding of liver biology in health and disease. A major risk factor for the development of liver disease is hepatic fibrosis. Key drivers of this process are metabolic dysfunction and pathologic activation of the immune system. Although non-alcoholic fatty liver disease (NAFLD) is largely regarded as benign, it does progress to non-alcoholic steatohepatitis in a subset of patients, increasing their risk of developing cirrhosis and hepatocellular carcinoma. NAFLD susceptibility varies across the population, with obesity and insulin resistance playing a strong role in the disease development. Additionally, sex and age have been identified as important risk factors. In addition to the regulation of liver biochemistry, sex hormones also regulate the immune system, with sexual dimorphism described for both innate and adaptive immune responses. Therefore, sex differences in liver metabolism, immunity and their interplay are important factors to consider when designing, studying and developing therapeutic strategies to treat human liver disease. The purpose of this review is to provide the reader with a general overview of sex steroid biology and their regulation of mammalian liver physiology.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Feminino , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática/patologia , Hormônios Esteroides Gonadais , Esteroides , Mamíferos
7.
Nat Commun ; 13(1): 5752, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180478

RESUMO

Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasite Trypanosoma brucei and induces profound reactivity of glial cells and neuroinflammation when the parasites colonise the central nervous system. However, the transcriptional and functional responses of the brain to chronic T. brucei infection remain poorly understood. By integrating single cell and spatial transcriptomics of the mouse brain, we identify that glial responses triggered by infection are readily detected in the proximity to the circumventricular organs, including the lateral and 3rd ventricle. This coincides with the spatial localisation of both slender and stumpy forms of T. brucei. Furthermore, in silico predictions and functional validations led us to identify a previously unknown crosstalk between homeostatic microglia and Cd138+ plasma cells mediated by IL-10 and B cell activating factor (BAFF) signalling. This study provides important insights and resources to improve understanding of the molecular and cellular responses in the brain during infection with African trypanosomes.


Assuntos
Parasitos , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Fator Ativador de Células B , Encéfalo/parasitologia , Humanos , Interleucina-10 , Camundongos , Microglia , Plasmócitos , Transcriptoma , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia
8.
Immunol Cell Biol ; 100(10): 757-758, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35849026

RESUMO

This commentary focuses on the necessity for LGBTQ+ people working in academia to feel safe, without fear of repercussions for revealing or expressing their identity. I discuss the importance of uncoupling people's appearance and identity from their research. I also include perspectives on how visible allyship can improve feelings of safety, which can help people to be more creative and productive in the workplace.


Assuntos
Minorias Sexuais e de Gênero , Humanos
9.
Epigenetics Chromatin ; 14(1): 31, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193254

RESUMO

Exposure to early life stress (ELS) during childhood or prenatally increases the risk of future psychiatric disorders. The effect of stress exposure during the neonatal period is less well understood. In preterm infants, exposure to invasive procedures is associated with altered brain development and future stress responses suggesting that the neonatal period could be a key time for the programming of mental health. Previous studies suggest that ELS affects the hypothalamic epigenome, making it a good candidate to mediate these effects. In this study, we used a mouse model of early life stress (modified maternal separation; MMS). We hypothesised MMS would affect the hypothalamic transcriptome and DNA methylome, and impact on adult behaviour. MMS involved repeated stimulation of pups for 1.5 h/day, whilst separated from their mother, from postnatal day (P) 4-6. 3'mRNA sequencing and DNA methylation immunoprecipitation (meDIP) sequencing were performed on hypothalamic tissue at P6. Behaviour was assessed with the elevated plus, open field mazes and in-cage monitoring at 3-4 months of age. MMS was only associated with subtle changes in gene expression, but there were widespread alterations in DNA methylation. Notably, differentially methylated regions were enriched for synapse-associated loci. MMS resulted in hyperactivity in the elevated plus and open field mazes, but in-cage monitoring revealed that this was not representative of habitual hyperactivity. ELS has marked effects on DNA methylation in the hypothalamus in early life and results in stress-specific hyperactivity in young adulthood. These results have implications for the understanding of ELS-mediated effects on brain development.


Assuntos
Experiências Adversas da Infância , Metilação de DNA , Adulto , Animais , Humanos , Hipotálamo , Recém-Nascido , Recém-Nascido Prematuro , Privação Materna , Camundongos , Adulto Jovem
10.
STAR Protoc ; 2(2): 100493, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33997813

RESUMO

This protocol describes the production of hepatocyte-like cells (HLCs) from human pluripotent stem cells and how to induce hepatic steatosis, a condition characterized by intracellular lipid accumulation. Following differentiation to an HLC phenotype, intracellular lipid accumulation is induced with a steatosis induction cocktail, allowing the user to examine the cellular processes that underpin hepatic steatosis. Furthermore, the renewable nature of our system, on a defined genetic background, permits in-depth mechanistic analysis, which may facilitate therapeutic target identification in the future. For complete details on the use and execution of this protocol, please refer to Sinton et al. (2021).


Assuntos
Diferenciação Celular , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Modelos Biológicos , Células-Tronco Pluripotentes/metabolismo , Fígado Gorduroso/patologia , Hepatócitos/patologia , Humanos , Células-Tronco Pluripotentes/patologia
11.
iScience ; 24(1): 101931, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33409477

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is currently the most prevalent form of liver disease worldwide. This term encompasses a spectrum of pathologies, from benign hepatic steatosis to non-alcoholic steatohepatitis, which have, to date, been challenging to model in the laboratory setting. Here, we present a human pluripotent stem cell (hPSC)-derived model of hepatic steatosis, which overcomes inherent challenges of current models and provides insights into the metabolic rewiring associated with steatosis. Following induction of macrovesicular steatosis in hepatocyte-like cells using lactate, pyruvate, and octanoate (LPO), respirometry and transcriptomic analyses revealed compromised electron transport chain activity. 13C isotopic tracing studies revealed enhanced TCA cycle anaplerosis, with concomitant development of a compensatory purine nucleotide cycle shunt leading to excess generation of fumarate. This model of hepatic steatosis is reproducible, scalable, and overcomes the challenges of studying mitochondrial metabolism in currently available models.

13.
Nat Commun ; 11(1): 3097, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555194

RESUMO

Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass, yet unlike white or brown adipose tissues (WAT or BAT) its metabolic functions remain unclear. Herein, we address this critical gap in knowledge. Our transcriptomic analyses revealed that BMAT is distinct from WAT and BAT, with altered glucose metabolism and decreased insulin responsiveness. We therefore tested these functions in mice and humans using positron emission tomography-computed tomography (PET/CT) with 18F-fluorodeoxyglucose. This revealed that BMAT resists insulin- and cold-stimulated glucose uptake, while further in vivo studies showed that, compared to WAT, BMAT resists insulin-stimulated Akt phosphorylation. Thus, BMAT is functionally distinct from WAT and BAT. However, in humans basal glucose uptake in BMAT is greater than in axial bones or subcutaneous WAT and can be greater than that in skeletal muscle, underscoring the potential of BMAT to influence systemic glucose homeostasis. These PET/CT studies characterise BMAT function in vivo, establish new methods for BMAT analysis, and identify BMAT as a distinct, major adipose tissue subtype.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Medula Óssea/metabolismo , Glucose/metabolismo , Animais , Western Blotting , Feminino , Homeostase/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons , Ratos , Esqueleto/metabolismo
14.
Clin Epigenetics ; 11(1): 104, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319896

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is estimated to affect 24% of the global adult population. NAFLD is a major risk factor for the development of cirrhosis and hepatocellular carcinoma, as well as being strongly associated with type 2 diabetes and cardiovascular disease. It has been proposed that up to 88% of obese adults have NAFLD, and with global obesity rates increasing, this disease is set to become even more prevalent. Despite intense research in this field, the molecular processes underlying the pathology of NAFLD remain poorly understood. Hepatic intracellular lipid accumulation may lead to dysregulated tricarboxylic acid (TCA) cycle activity and associated alterations in metabolite levels. The TCA cycle metabolites alpha-ketoglutarate, succinate and fumarate are allosteric regulators of the alpha-ketoglutarate-dependent dioxygenase family of enzymes. The enzymes within this family have multiple targets, including DNA and chromatin, and thus may be capable of modulating gene transcription in response to intracellular lipid accumulation through alteration of the epigenome. In this review, we discuss what is currently understood in the field and suggest areas for future research which may lead to the development of novel preventative or therapeutic interventions for NAFLD.


Assuntos
Epigenômica/métodos , Hepatopatia Gordurosa não Alcoólica/genética , Transcrição Gênica , Ciclo do Ácido Cítrico , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...