Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(15): 16969-16975, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645321

RESUMO

In this research, we present a novel approach to achieving super-resolution in silicon using the plasma dispersion effect (PDE) that temporarily controls the complex refractive index of matter. By employing a laser vortex pump beam, which is absorbed in the silicon, we can shape the complex refractive index as a gradient index (GRIN) lens, enabling the focusing of a laser probe beam within the material. Our study introduces a single beam at a wavelength of 775 nm for both the pump and the probe beams, offering tunable focusing capabilities and the potential to attain higher spatial resolution. These findings hold significant promise for applications in nanoelectronics and integrated circuit failure analysis, paving the way for advanced semiconductor imaging and analysis techniques.

2.
Laser Photon Rev ; 17(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38883699

RESUMO

Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.

3.
Sci Rep ; 12(1): 6342, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428805

RESUMO

We report here on focusing of a probe IR (λ = 1.55 µm) laser beam in silicon. The focusing is done by a second pump laser beam, at λ = 0.775 µm and 30 ps pulse width, with a donut shape that is launched collinearly and simultaneously (with some delay time) with the IR beam pulse. The pump beam pulse is absorbed in the silicon and creates, temporally, a free charge carriers (FCCs) donut pattern in the silicon. Following the plasma dispersion effect, the donut FCCs shapes a complex index of refraction pattern in the silicon that serves as a sort of dynamic GRIN lens for the probe beam due to the diffusion of the FCCs towards the donut center. This lens can be tuned to its focal point by the pump-probe delay time to reduce the point spread function (PSF) of the IR probe beam. We start seeing the focusing of the probe beam at pump-probe delay time of [Formula: see text]. The best focusing (results in PSF [Formula: see text]) was observed at [Formula: see text] and it slowly degrades before the FCCs full recombination at [Formula: see text]. We propose this beam shaping method to overcome the diffraction resolution limit in silicon microscopy on and deep under the silicon surface dependent on the pump wavelength and the pulse width. We also proposed this technique for direct measurement of the FCCs dynamics.

4.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216400

RESUMO

Photodynamic therapy (PDT) and photothermal therapy (PTT) are promising therapeutic methods for cancer treatment; however, as single modality therapies, either PDT or PTT is still limited in its success rate. A dual application of both PDT and PTT, in a combined protocol, has gained immense interest. In this study, gold nanoparticles (AuNPs) were conjugated with a PDT agent, meso-tetrahydroxyphenylchlorin (mTHPC) photosensitizer, designed as nanotherapeutic agents that can activate a dual photodynamic/photothermal therapy in SH-SY5Y human neuroblastoma cells. The AuNP-mTHPC complex is biocompatible, soluble, and photostable. PDT efficiency is high because of immediate reactive oxygen species (ROS) production upon mTHPC activation by the 650-nm laser, which decreased mitochondrial membrane potential (∆ψm). Likewise, the AuNP-mTHPC complex is used as a photoabsorbing (PTA) agent for PTT, due to efficient plasmon absorption and excellent photothermal conversion characteristics of AuNPs under laser irradiation at 532 nm. Under the laser irradiation of a PDT/PTT combination, a twofold phototoxicity outcome follows, compared to PDT-only or PTT-only treatment. This indicates that PDT and PTT have synergistic effects together as a combined therapeutic method. Our study aimed at applying the AuNP-mTHPC approach as a potential treatment of cancer in the biomedical field.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fototerapia/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada/métodos , Ouro/química , Humanos , Lasers , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fármacos Fotossensibilizantes/química
5.
Sci Rep ; 11(1): 18883, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556680

RESUMO

Tungsten disulfide nanotubes (WS2-NTs) were found to be very active for photothermal therapy. However, their lack of stability in aqueous solutions inhibits their use in many applications, especially in biomedicine. Few attempts were made to chemically functionalize the surface of the NTs to improve their dispersability. Here, we present a new polymerization method using cerium-doped maghemite nanoparticles (CM-NPs) as magnetic nanosized linkers between the WS2-NT surface and pyrrole-N-propionic acid monomers, which allow in situ polymerization onto the composite surface. This unique composite is magnetic, and contains two active entities for photothermal therapy-WS2 and the polypyrrole. The photothermal activity of the composite was tested at a wavelength of 808 nm, and significant thermal activity was observed. Moreover, the polycarboxylated polymeric coating of the NTs enables effective linkage of additional molecules or drugs via covalent bonding. In addition, a new method was established for large-scale synthesis of CM-NPs and WS2-NT-CM composites.

6.
Sci Rep ; 10(1): 16619, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32999382

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Sci Rep ; 10(1): 6029, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32238830

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Sci Rep ; 10(1): 4755, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179817

RESUMO

Superoscillation is a technique that is used to produce a spot of light (known as 'hotspot') which is smaller than the conventional diffraction limit of a lens and even smaller than the optical wavelength. Over the past few years, several techniques have been realized for the generation of the superoscillatory hotspot. In this article, for the first time to the best of our knowledge, we propose a novel and a more efficient technique for producing superoscillation in microscopic imaging by shaping the Coherent Transfer Function (CTF) of a lens via virtual Fourier filtering followed by a phase retrieval algorithm. We design and realize a phase mask which when placed at the pupil plane of a diffraction-limited lens produces a superoscillatory hotspot with sidelobes properly matched to the field of view (FOV) required in microscopic imaging applications, i.e. hotspot always coexists with huge intense rings known as 'sidebands' close to it and hence limiting the FOV. Our technique is also capable of extending the FOV with minimal loss in resolution of the hotspot generated and considerable ratio between the intensity of the hotspot to that of the side lobes while optimizing the obtainable FOV to the requirement of microscopy.

9.
Sci Rep ; 9(1): 12275, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439914

RESUMO

Fundamental challenge of imaging through a scattering media has been resolved by various approaches in the past two decades. Optical wavefront shaping technique is one such method in which one shapes the wavefront of light entering a scattering media using a wavefront shaper such that it cancels the scattering effect. It has been the most effective technique in focusing light inside a scattering media. Unfortunately, most of these techniques require direct access to the scattering medium or need to know the scattering properties of the medium beforehand. Through the novel scheme presented on this paper, both the illumination module and the detection are on the same side of the inspected object and the imaging process is a real time fast converging operation. We model the scattering medium being a biological tissue as a matrix having mathematical properties matched to the physical and biological aspects of the sample. In our adaptive optics scheme, we aim to estimate the scattering function and thus to encode the intensity of the illuminating laser light source using DMD (Digital Micromirror Device) with an inverse scattering function of the scattering medium, such that after passing its scattering function a focused beam is obtained. We optimize the pattern to be displayed on the DMD using Particle Swarm Algorithm (PSO) which eventually help in retrieving a 1D object hidden behind the media.

10.
Opt Express ; 26(19): 25370-25380, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469640

RESUMO

We present here a new method for shaping a pulsed IR (λ = 1550nm) laser beam in silicon. The shaping is based on the plasma dispersion effect (PDE). The shaping is done by a second pulsed pump laser beam at 532nm (in either a Gaussian mode or a donut mode) which simultaneously and collinearly illuminates the silicon's surface with the IR beam. Following the PDE, and in proportion to its spatial intensity distribution, the 532nm laser beam shapes the point spread function (PSF) by controlling the lateral transmission of the IR probe beam. The use of this probe in a laser scanning microscope allows imaging and a wide range of contactless electrical measurements in silicon integrated circuits (IC) being under operation. We propose this shaping method to overcome the diffraction resolution limit in silicon microscopy on and deep under the silicon surface.

11.
Materials (Basel) ; 10(2)2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28772563

RESUMO

Utilizing the surface plasmon resonance (SPR) effect of gold nanoparticles (GNPs) enables their use as contrast agents in a variety of biomedical applications for diagnostics and treatment. These applications use both the very strong scattering and absorption properties of the GNPs due to their SPR effects. Most imaging methods use the light-scattering properties of the GNPs. However, the illumination source is in the same wavelength of the GNPs' scattering wavelength, leading to background noise caused by light scattering from the tissue. In this paper we present a method to improve border detection of regions enriched with GNPs aiming for the real-time application of complete tumor resection by utilizing the absorption of specially targeted GNPs using photothermal imaging. Phantoms containing different concentrations of GNPs were irradiated with a continuous-wave laser and measured with a thermal imaging camera which detected the temperature field of the irradiated phantoms. By modulating the laser illumination, and use of a simple post processing, the border location was identified at an accuracy of better than 0.5 mm even when the surrounding area got heated. This work is a continuation of our previous research.

12.
Int J Nanomedicine ; 7: 4707-13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22956871

RESUMO

BACKGROUND: One of the critical problems in cancer management is local recurrence of disease. Between 20% and 30% of patients who undergo tumor resection surgery require reoperation due to incomplete excision. Currently, there are no validated methods for intraoperative tumor margin detection. In the present work, we demonstrate the potential use of gold nanoparticles (GNPs) as a novel contrast agent for photothermal molecular imaging of cancer. METHODS: Phantoms containing different concentrations of GNPs were irradiated with continuous-wave laser and measured with a thermal imaging camera which detected the temperature field of the irradiated phantoms. RESULTS: The results clearly demonstrate the ability to distinguish between cancerous cells specifically targeted with GNPs and normal cells. This technique, which allows highly sensitive discrimination between adjacent low GNP concentrations, will allow tumor margin detection while the temperature increases by only a few degrees Celsius (for GNPs in relevant biological concentrations). CONCLUSION: We expect this real-time intraoperative imaging technique to assist surgeons in determining clear tumor margins and to maximize the extent of tumor resection while sparing normal background tissue.


Assuntos
Anticorpos Monoclonais/imunologia , Ouro , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Nanopartículas Metálicas , Imagem Molecular/métodos , Termografia/métodos , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Sistemas Computacionais , Meios de Contraste , Humanos , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...