Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J Spec Top ; 231(18-20): 3427-3437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371394

RESUMO

This paper presents a dynamic system for estimating the spreading profile of COVID-19 in Thailand, taking into account the effects of vaccination and social distancing. For this purpose, a compartmental network is built in which the population is divided into nine mutually exclusive nodes, including susceptible, insusceptible, exposed, infected, vaccinated, recovered, quarantined, hospitalized, and dead. The weight of edges denotes the interaction between the nodes, modeled by a series of conversion rates. Next, the compartmental network and corresponding rates are incorporated into a system of fractional partial differential equations to define the model governing the problem concerned. The fractional degree corresponding to each compartment is considered the node weight in the proposed network. Next, a Monte Carlo-based optimization method is proposed to fit the fractional compartmental network to the actual COVID-19 data of Thailand collected from the World Health Organization. Further, a sensitivity analysis is conducted on the node weights, i.e., fractional orders, to reveal their effect on the accuracy of the fit and model predictions. The results show that the flexibility of the model to adapt to the observed data is markedly improved by lowering the order of the differential equations from unity to a fractional order. The final results show that, assuming the current pandemic situation, the number of infected, recovered, and dead cases in Thailand will, respectively, reach 4300, 4.5 × 10 6 , and 36,000 by the end of 2021.

2.
Entropy (Basel) ; 23(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34681991

RESUMO

Predicting the way diseases spread in different societies has been thus far documented as one of the most important tools for control strategies and policy-making during a pandemic. This study is to propose a network autoregressive (NAR) model to forecast the number of total currently infected cases with coronavirus disease 2019 (COVID-19) in Iran until the end of December 2021 in view of the disease interactions within the neighboring countries in the region. For this purpose, the COVID-19 data were initially collected for seven regional nations, including Iran, Turkey, Iraq, Azerbaijan, Armenia, Afghanistan, and Pakistan. Thenceforth, a network was established over these countries, and the correlation of the disease data was calculated. Upon introducing the main structure of the NAR model, a mathematical platform was subsequently provided to further incorporate the correlation matrix into the prediction process. In addition, the maximum likelihood estimation (MLE) was utilized to determine the model parameters and optimize the forecasting accuracy. Thereafter, the number of infected cases up to December 2021 in Iran was predicted by importing the correlation matrix into the NAR model formed to observe the impact of the disease interactions in the neighboring countries. In addition, the autoregressive integrated moving average (ARIMA) was used as a benchmark to compare and validate the NAR model outcomes. The results reveal that COVID-19 data in Iran have passed the fifth peak and continue on a downward trend to bring the number of total currently infected cases below 480,000 by the end of 2021. Additionally, 20%, 50%, 80% and 95% quantiles are provided along with the point estimation to model the uncertainty in the forecast.

3.
Results Phys ; 26: 104364, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34094819

RESUMO

A probabilistic method is proposed in this study to predict the spreading profile of the coronavirus disease 2019 (COVID-19) in the United State (US) via time-variant reliability analysis. To this end, an extended susceptible-exposed-infected-vaccinated-recovered (SEIVR) epidemic model is first established deterministically, considering the quarantine and vaccination effects, and then applied to the available COVID-19 data from US. Afterwards, the prediction results are described as a time-series of the number of people infected, recovered, and dead. Upon introducing the extended SEIVR model into a limit-state function and defining the model parameters including transmission, recovery, and mortality rates as random variables, the problem is transformed into a reliability model and analyzed by the Monte Carlo sampling. The findings are subsequently given in the form of exceedance probabilities (EPs) of the three main outputs, namely, the maximum number of infected cases, the total number of recovered cases, and the total number of fatal cases. Afterwards, by incorporating time into the formulation of the reliability problem, the EPs are calculated over time and presented as 3D probability graphs, illustrating the relationship between the number of cases affected (i.e., infected, recovered, or dead), exceedance probability, and time. The results for the US demonstrate that, by the end of 2021, the number of the infected (active) cases decreases to 0.8 million and number of cases recovered and fatalities increases to 41.3 million and 0.6 million, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...