Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acid Ther ; 29(6): 305-322, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31429628

RESUMO

Delivery to the target site and adversities related to off-target exposure have made the road to clinical success and approval of antisense oligonucleotide (AON) therapies challenging. Various classes of AONs have distinct chemical features and pharmacological properties. Understanding the similarities and differences in pharmacokinetics (PKs) among AON classes is important to make future development more efficient and may facilitate regulatory guidance of AON development programs. For the class of 2'-O-methyl phosphorothioate (2OMe PS) RNA AONs, most nonclinical and clinical PK data available today are derived from development of exon skipping therapies for Duchenne muscular dystrophy (DMD). While some publications have featured PK aspects of these AONs, no comprehensive overview is available to date. This article presents a detailed review of absorption, distribution, metabolism, and excretion of 2OMe PS AONs, compiled from publicly available data and previously unpublished internal data on drisapersen and related exon skipping candidates in preclinical species and DMD patients. Considerations regarding drug-drug interactions, toxicokinetics, and pharmacodynamics are also discussed. From the data presented, the picture emerges of consistent PK properties within the 2OMe PS class, predictable behavior across species, and a considerable overlap with other single-stranded PS AONs. A level of detail on muscle as a target tissue is provided, which was not previously available. Furthermore, muscle biopsy samples taken in DMD clinical trials allowed confirmation of the applicability of interspecies scaling approaches commonly applied in the absence of clinical target tissue data.


Assuntos
Terapia Genética/tendências , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Fosforotioatos/genética , Distrofina/genética , Éxons/efeitos dos fármacos , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Fosforotioatos/farmacocinética , Oligonucleotídeos Fosforotioatos/uso terapêutico , Splicing de RNA/efeitos dos fármacos
2.
Ann Vasc Surg ; 42: 293-298, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28300679

RESUMO

BACKGROUND: Arterial blood pressure-induced shear stress causes endothelial cell apoptosis and inflammation in vein grafts after coronary artery bypass grafting. As the inflammatory protein type IIA secretory phospholipase A2 (sPLA2-IIA) has been shown to progress atherosclerosis, we hypothesized a role for sPLA2-IIA herein. METHODS: The effects of PX-18, an inhibitor of both sPLA2-IIA and apoptosis, on residual endothelium and the presence of sPLA2-IIA were studied in human saphenous vein segments (n = 6) perfused at arterial blood pressure with autologous blood for 6 hrs. RESULTS: The presence of PX-18 in the perfusion blood induced a significant 20% reduction in endothelial cell loss compared to veins perfused without PX18, coinciding with significantly reduced sPLA2-IIA levels in the media of the vein graft wall. In addition, PX-18 significantly attenuated caspase-3 activation in human umbilical vein endothelial cells subjected to shear stress via mechanical stretch independent of sPLA2-IIA. CONCLUSIONS: In conclusion, PX-18 protects saphenous vein endothelial cells from arterial blood pressure-induced death, possibly also independent of sPLA2-IIA inhibition.


Assuntos
Ácidos Alcanossulfônicos/farmacologia , Pressão Arterial , Células Endoteliais/efeitos dos fármacos , Fosfolipases A2 do Grupo II/antagonistas & inibidores , Mecanotransdução Celular/efeitos dos fármacos , Ácidos Oleicos/farmacologia , Inibidores de Fosfolipase A2/farmacologia , Veia Safena/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Fosfolipases A2 do Grupo II/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Veia Safena/enzimologia , Veia Safena/patologia , Fatores de Tempo
3.
PLoS One ; 9(9): e107494, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25244123

RESUMO

Duchenne muscular dystrophy (DMD) is characterized by the absence or reduced levels of dystrophin expression on the inner surface of the sarcolemmal membrane of muscle fibers. Clinical development of therapeutic approaches aiming to increase dystrophin levels requires sensitive and reproducible measurement of differences in dystrophin expression in muscle biopsies of treated patients with DMD. This, however, poses a technical challenge due to intra- and inter-donor variance in the occurrence of revertant fibers and low trace dystrophin expression throughout the biopsies. We have developed an immunofluorescence and semi-automated image analysis method that measures the sarcolemmal dystrophin intensity per individual fiber for the entire fiber population in a muscle biopsy. Cross-sections of muscle co-stained for dystrophin and spectrin have been imaged by confocal microscopy, and image analysis was performed using Definiens software. Dystrophin intensity has been measured in the sarcolemmal mask of spectrin for each individual muscle fiber and multiple membrane intensity parameters (mean, maximum, quantiles per fiber) were calculated. A histogram can depict the distribution of dystrophin intensities for the fiber population in the biopsy. This method was tested by measuring dystrophin in DMD, Becker muscular dystrophy, and healthy muscle samples. Analysis of duplicate or quadruplicate sections of DMD biopsies on the same or multiple days, by different operators, or using different antibodies, was shown to be objective and reproducible (inter-assay precision, CV 2-17% and intra-assay precision, CV 2-10%). Moreover, the method was sufficiently sensitive to detect consistently small differences in dystrophin between two biopsies from a patient with DMD before and after treatment with an investigational compound.


Assuntos
Distrofina/metabolismo , Imunofluorescência/métodos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Biópsia , Humanos , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular de Duchenne/patologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Mol Ther Nucleic Acids ; 3: e148, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24549299

RESUMO

Antisense-mediated exon skipping is currently in clinical development for Duchenne muscular dystrophy (DMD) to amend the consequences of the underlying genetic defect and restore dystrophin expression. Due to turnover of compound, transcript, and protein, chronic treatment with effector molecules (antisense oligonucleotides) will be required. To investigate the dynamics and persistence of antisense 2'-O-methyl phosphorothioate oligonucleotides, exon skipping, and dystrophin expression after dosing was concluded, mdx mice were treated subcutaneously for 8 weeks with 100 mg/kg oligonucleotides twice weekly. Thereafter, mice were sacrificed at different time points after the final injection (36 hours-24 weeks). Oligonucleotide half-life was longer in heart (~65 days) compared with that in skeletal muscle, liver, and kidney (~35 days). Exon skipping half-lives varied between 33 and 53 days, whereas dystrophin protein showed a long half-life (>100 days). Oligonucleotide and exon-skipping levels peaked in the first week and declined thereafter. By contrast, dystrophin expression peaked after 3-8 weeks and then slowly declined, remaining detectable after 24 weeks. Concordance between levels of oligonucleotides, exon skipping, and proteins was observed, except in heart, wherein high oligonucleotide levels but low exon skipping and dystrophin expression were seen. Overall, these results enhance our understanding of the pharmacokinetics and pharmacodynamics of 2'-O-methyl phosphorothioate oligos used for the treatment of DMD.Molecular Therapy-Nucleic Acids (2014) 3, e148; doi:10.1038/mtna.2014.1; published online 18 February 2014.

5.
Cell Biochem Biophys ; 67(2): 341-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22038300

RESUMO

Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01-2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47(phox) expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47(phox), and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47(phox) in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47(phox) was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.


Assuntos
Apoptose/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Homocisteína/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , NADPH Oxidase 2 , NADPH Oxidase 4 , Óxido Nítrico/metabolismo , Transporte Proteico/efeitos dos fármacos
6.
Basic Res Cardiol ; 107(1): 233, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22167343

RESUMO

Pro-coagulant and pro-inflammatory intramyocardial (micro)vasculature plays an important role in acute myocardial infarction (AMI). Currently, inhibition of serine protease dipeptidyl peptidase 4 (DPP4) receives a lot of interest as an anti-hyperglycemic therapy in type 2 diabetes patients. However, DPP4 also possesses anti-thrombotic properties and may behave as an immobilized anti-coagulant on endothelial cells. Here, we studied the expression and activity of endothelial DPP4 in human myocardial infarction in relation to a prothrombogenic endothelial phenotype. Using (immuno)histochemistry, DPP4 expression and activity were found on the endothelium of intramyocardial blood vessels in autopsied control hearts (n = 9). Within the infarction area of AMI patients (n = 73), this DPP4 expression and activity were significantly decreased, coinciding with an increase in Tissue Factor expression. In primary human umbilical vein endothelial cells (HUVECs), Western blot analysis and digital imaging fluorescence microscopy revealed that DPP4 expression was strongly decreased after metabolic inhibition, also coinciding with Tissue Factor upregulation. Interestingly, inhibition of DPP4 activity with diprotin A also enhanced the amount of Tissue Factor encountered and induced the adherence of platelets under flow conditions. Ischemia induces loss of coronary microvascular endothelial DPP4 expression and increased Tissue Factor expression in AMI as well as in vitro in HUVECs. Our data suggest that the loss of DPP4 activity affects the anti-thrombogenic nature of the endothelium.


Assuntos
Trombose Coronária/enzimologia , Vasos Coronários/enzimologia , Dipeptidil Peptidase 4/metabolismo , Microvasos/enzimologia , Infarto do Miocárdio/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/enzimologia , Adesividade Plaquetária , Tromboplastina/metabolismo
7.
Atherosclerosis ; 221(1): 48-54, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22204864

RESUMO

OBJECTIVE: We have previously shown that homocysteine (Hcy) induces phosphatidylserine (PS) exposure, apoptosis and necrosis in human endothelial cells. Since it has been suggested that S-adenosylhomocysteine (SAH) is the main causative factor in Hcy-induced pathogenesis of cardiovascular disease, we evaluate here whether the cytotoxic Hcy effect in endothelial cells is also SAH dependent. METHODS AND RESULTS: Human umbilical vein endothelial cells (HUVECs) were exposed to the following conditions: (1) non-treated control (resulting in 2.8 nM intracellular SAH and 3.1 µM extracellular l-Hcy); and incubation with (2) 50 µM adenosine-2,3-dialdehyde (ADA; resulting in 17.7 nM intracellular SAH and 3.1 µM extracellular l-Hcy), (3) 2.5 mM Hcy (resulting in 20.9 nM intracellular SAH and 1.8 mM extracellular l-Hcy), and (4) 1, 10 and 100 µM SAH. We then determined the effect of treatment on annexin V-positivity, caspase-3 activity, cytochrome c release (sub)cellular expression of NOX2, NOX4, p47(phox) and nitrotyrosine, and H(2)O(2). Both Hcy and ADA significantly increased PS exposure (n=5), caspase-3 activity (n=6) and cytochrome c release (n=3). Incubation with extracellular SAH alone did not affect cell viability. Both Hcy and ADA also induced similar increases in nuclear NOX2 and (peri)nuclear NOX4, coinciding with (peri)nuclear p47(phox) expression and local reactive oxygen species (ROS) (n=3). Inhibition of NOX-mediated ROS by the flavoenzyme inhibitor diphenylene iodonium (DPI) significantly decreased apoptosis induction (n=3) and ROS production (n=3). CONCLUSION: SAH induces PS exposure and apoptosis in endothelial cells independently of Hcy. Our study therefore shows that Hcy-mediated endothelial dysfunction, as determined in the cell model used, is mainly due to SAH accumulation.


Assuntos
Apoptose , Células Endoteliais/metabolismo , Homocisteína/metabolismo , Fosfatidilserinas/metabolismo , S-Adenosil-Homocisteína/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Sobrevivência Celular , Células Cultivadas , Citocromos c/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Inibidores Enzimáticos/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Oniocompostos/farmacologia , Tirosina/análogos & derivados , Tirosina/metabolismo
8.
Cell Physiol Biochem ; 28(1): 53-62, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21865848

RESUMO

AIMS: Increased levels of homocysteine (Hcy) form an independent risk factor for cardiovascular disease. In a previous study we have shown that Hcy induced phosphatidylserine (PS) exposure to the outer leaflet of the plasma membrane in cardiomyocytes, inducing a pro-inflammatory phenotype. In the present study the mechanism(s) involved in Hcy-induced PS exposure were analyzed. METHODS: H9c2 rat cardiomyoblasts were subjected to 2.5 mM D,L-Hcy and analyzed for RhoA translocation and activity, Rho Kinase (ROCK) activity and expression and flippase activity. In addition, the effect of ROCK inhibition with Y27632 on Hcy-induced PS exposure and flippase activity was analyzed. Furthermore, GTP and ATP levels were determined. RESULTS: Incubation of H9c2 cells with 2.5 mM D,L-Hcy did not inhibit RhoA translocation to the plasma membrane. Neither did it inhibit activation of RhoA, even though GTP levels were significantly decreased. Hcy did significantly inhibit ROCK activation, but not its expression, and did inhibit flippase activity, in advance of a significant decrease in ATP levels. ROCK inhibition via Y27632 did not have significant added effects on this. CONCLUSION: Hcy induced PS exposure in the outer leaflet of the plasma membrane in cardiomyocytes via inhibition of ROCK and flippase activity. As such Hcy may induce cardiomyocytes vulnerable to inflammation in vivo in hyperhomocysteinaemia patients.


Assuntos
Homocisteína/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/antagonistas & inibidores , Quinases Associadas a rho/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Amidas/farmacologia , Animais , Células Cultivadas , Guanosina Trifosfato/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Ratos , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
9.
Mol Cell Biochem ; 358(1-2): 229-39, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21739151

RESUMO

We previously found that homocysteine (Hcy) induced plasma membrane flip-flop, apoptosis, and necrosis in cardiomyocytes. Inactivation of flippase by Hcy induced membrane flip-flop, while apoptosis was induced via a NOX2-dependent mechanism. It has been suggested that S-adenosylhomocysteine (SAH) is the main causative factor in hyperhomocysteinemia (HHC)-induced pathogenesis of cardiovascular disease. Therefore, we evaluated whether the observed cytotoxic effect of Hcy in cardiomyocytes is SAH dependent. Rat cardiomyoblasts (H9c2 cells) were treated under different conditions: (1) non-treated control (1.5 nM intracellular SAH with 2.8 µM extracellular L -Hcy), (2) incubation with 50 µM adenosine-2,3-dialdehyde (ADA resulting in 83.5 nM intracellular SAH, and 1.6 µM extracellular L -Hcy), (3) incubation with 2.5 mM D, L -Hcy (resulting in 68 nM intracellular SAH and 1513 µM extracellular L -Hcy) with or without 10 µM reactive oxygen species (ROS)-inhibitor apocynin, and (4) incubation with 100 nM, 10 µM, and 100 µM SAH. We then determined the effect on annexin V/propodium iodide positivity, flippase activity, caspase-3 activity, intracellular NOX2 and p47(phox) expression and localization, and nuclear ROS production. In contrast to Hcy, ADA did not induce apoptosis, necrosis, or membrane flip-flop. Remarkably, both ADA and Hcy induced a significant increase in nuclear NOX2 expression. However, in contrast to ADA, Hcy additionally induced nuclear p47(phox) expression, increased nuclear ROS production, and inactivated flippase. Incubation with SAH did not have an effect on cell viability, nor on flippase activity, nor on nuclear NOX2-, p47phox expression or nuclear ROS production. HHC-induced membrane flip-flop and apoptosis in cardiomyocytes is due to increased Hcy levels and not primarily related to increased intracellular SAH, which plays a crucial role in nuclear p47(phox) translocation and subsequent ROS production.


Assuntos
Apoptose/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/enzimologia , Homocisteína/farmacologia , Miócitos Cardíacos/citologia , NADPH Oxidases/metabolismo , S-Adenosil-Homocisteína/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Caspase 3/metabolismo , Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Homocisteína/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , NADPH Oxidase 2 , Proteínas de Transferência de Fosfolipídeos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , S-Adenosilmetionina/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
10.
N Engl J Med ; 364(16): 1513-22, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21428760

RESUMO

BACKGROUND: Local intramuscular administration of the antisense oligonucleotide PRO051 in patients with Duchenne's muscular dystrophy with relevant mutations was previously reported to induce the skipping of exon 51 during pre-messenger RNA splicing of the dystrophin gene and to facilitate new dystrophin expression in muscle-fiber membranes. The present phase 1-2a study aimed to assess the safety, pharmacokinetics, and molecular and clinical effects of systemically administered PRO051. METHODS: We administered weekly abdominal subcutaneous injections of PRO051 for 5 weeks in 12 patients, with each of four possible doses (0.5, 2.0, 4.0, and 6.0 mg per kilogram of body weight) given to 3 patients. Changes in RNA splicing and protein levels in the tibialis anterior muscle were assessed at two time points. All patients subsequently entered a 12-week open-label extension phase, during which they all received PRO051 at a dose of 6.0 mg per kilogram per week. Safety, pharmacokinetics, serum creatine kinase levels, and muscle strength and function were assessed. RESULTS: The most common adverse events were irritation at the administration site and, during the extension phase, mild and variable proteinuria and increased urinary α(1)-microglobulin levels; there were no serious adverse events. The mean terminal half-life of PRO051 in the circulation was 29 days. PRO051 induced detectable, specific exon-51 skipping at doses of 2.0 mg or more per kilogram. New dystrophin expression was observed between approximately 60% and 100% of muscle fibers in 10 of the 12 patients, as measured on post-treatment biopsy, which increased in a dose-dependent manner to up to 15.6% of the expression in healthy muscle. After the 12-week extension phase, there was a mean (±SD) improvement of 35.2±28.7 m (from the baseline of 384±121 m) on the 6-minute walk test. CONCLUSIONS: Systemically administered PRO051 showed dose-dependent molecular efficacy in patients with Duchenne's muscular dystrophy, with a modest improvement in the 6-minute walk test after 12 weeks of extended treatment. (Funded by Prosensa Therapeutics; Netherlands National Trial Register number, NTR1241.).


Assuntos
Processamento Alternativo , Distrofia Muscular de Duchenne/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Adolescente , Criança , Pré-Escolar , Creatina Quinase/urina , Relação Dose-Resposta a Droga , Distrofina/genética , Distrofina/metabolismo , Teste de Esforço , Éxons , Humanos , Injeções Subcutâneas , Masculino , Força Muscular/efeitos dos fármacos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Mutação , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos/sangue , RNA/análise
11.
J Mol Cell Cardiol ; 49(5): 781-90, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20691698

RESUMO

Subsequent to myocardial infarction, cardiomyocytes within the infarcted areas and border zones expose phosphatidylserine (PS) in the outer plasma membrane leaflet (flip-flop). We showed earlier that in addition to apoptosis, this flip-flop can be reversible in cardiomyocytes. We now investigated a possible role for Rho and downstream effector Rho-associated kinase (ROCK) in the process of (reversible) PS exposure and apoptosis in cardiomyocytes. In rat cardiomyoblasts (H9c2 cells) and isolated adult ventricular rat cardiomyocytes Clostridium difficile Toxin B (TcdB), a Rho GTPase family inhibitor, C3 transferase (C3), a Rho(A,B,C) inhibitor and the ROCK inhibitors Y27632 and H1152 were used to inhibit Rho-ROCK signaling. PS exposure was assessed via flow cytometry and fluorescent digital imaging microscopy using annexin V. Akt expression and phosphorylation were analyzed via Western blot, and Akt activity was inhibited by wortmannin. The cellular concentration activated caspase 3 was determined as a measure of apoptosis, and flippase activity was assessed via flow cytometry using NBD-labeled PS. TcdB, C3, Y27632 and H1152 all significantly increased PS exposure. TcdB, Y27632 and H1152 all significantly inhibited phosphorylation of the anti-apoptotic protein Akt and Akt inhibition by wortmannin lead to increased PS exposure. However, only TcdB and C3, but not ROCK- or Akt inhibition led to caspase 3 activation and thus apoptosis. Notably, pancaspase inhibitor zVAD only partially inhibited TcdB-induced PS exposure indicating the existence of apoptotic and non-apoptotic PS exposure. The induced PS exposure coincided with decreased flippase activity as measured with NBD-labeled PS flip-flop. In this study, we show a regulatory role for a novel signaling route, Rho-ROCK-flippase signaling, in maintaining asymmetrical membrane phospholipid distribution in cardiomyocytes.


Assuntos
Apoptose , Miócitos Cardíacos/enzimologia , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , ADP Ribose Transferases/farmacologia , Trifosfato de Adenosina/metabolismo , Amidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Toxinas Botulínicas/farmacologia , Caspase 3/metabolismo , Inibidores de Caspase , Linhagem Celular , Separação Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
12.
Apoptosis ; 12(8): 1407-18, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17440815

RESUMO

BACKGROUND: Hyperhomocysteinaemia (HHC) is thought to be a risk factor for cardiovascular disease including heart failure. While numerous studies have analyzed the role of homocysteine (Hcy) in the vasculature, only a few studies investigated the role of Hcy in the heart. Therefore we have analyzed the effects of Hcy on isolated cardiomyocytes. METHODS: H9c2 cells (rat cardiomyoblast cells) and adult rat cardiomyocytes were incubated with Hcy and were analyzed for cell viability. Furthermore, we determined the effects of Hcy on intracellular mediators related to cell viability in cardiomyocytes, namely NOX2, reactive oxygen species (ROS), mitochondrial membrane potential (DeltaPsi (m)) and ATP concentrations. RESULTS: We found that incubation of H9c2 cells with 0.1 mM D,L-Hcy (= 60 microM L-Hcy) resulted in an increase of DeltaPsi (m) as well as ATP concentrations. 1.1 mM D,L-Hcy (= 460 microM L-Hcy) induced reversible flip-flop of the plasma membrane phospholipids, but not apoptosis. Incubation with 2.73 mM D,L-Hcy (= 1.18 mM L-Hcy) induced apoptosis and necrosis. This loss of cell viability was accompanied by a thread-to-grain transition of the mitochondrial reticulum, ATP depletion and nuclear NOX2 expression coinciding with ROS production as evident from the presence of nitrotyrosin residues. Notably, only at this concentration we found a significant increase in S-adenosylhomocysteine which is considered the primary culprit in HHC. CONCLUSION: We found concentration-dependent effects of Hcy in cardiomyocytes, varying from induction of reversible flip-flop of the plasma membrane phospholipids, to apoptosis and necrosis.


Assuntos
Apoptose/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Homocisteína/farmacologia , Fluidez de Membrana/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Caspase 3/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Homocisteína/análise , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Necrose/induzido quimicamente , Fosfolipídeos/metabolismo , Processamento de Proteína Pós-Traducional , Ratos , S-Adenosil-Homocisteína/análise , S-Adenosilmetionina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...