Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(6): e11341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826171

RESUMO

To address our climate emergency, "we must rapidly, radically reshape society"-Johnson & Wilkinson, All We Can Save. In science, reshaping requires formidable technical (cloud, coding, reproducibility) and cultural shifts (mindsets, hybrid collaboration, inclusion). We are a group of cross-government and academic scientists that are exploring better ways of working and not being too entrenched in our bureaucracies to do better science, support colleagues, and change the culture at our organizations. We share much-needed success stories and action for what we can all do to reshape science as part of the Open Science movement and 2023 Year of Open Science.

2.
Proc Biol Sci ; 289(1976): 20220526, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703054

RESUMO

A major challenge in sustainability science is identifying targets that maximize ecosystem benefits to humanity while minimizing the risk of crossing critical system thresholds. One critical threshold is the biomass at which populations become so depleted that their population growth rates become negative-depensation. Here, we evaluate how the value of monitoring information increases as a natural resource spends more time near the critical threshold. This benefit emerges because higher monitoring precision promotes higher yield and a greater capacity to recover from overharvest. We show that precautionary buffers that trigger increased monitoring precision as resource levels decline may offer a way to minimize monitoring costs and maximize profits. In a world of finite resources, improving our understanding of the trade-off between precision in estimates of population status and the costs of mismanagement will benefit stakeholders that shoulder the burden of these economic and social costs.


Assuntos
Ecossistema , Pesqueiros , Biomassa , Conservação dos Recursos Naturais
3.
Ecol Appl ; 31(7): e02401, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218492

RESUMO

Fisheries for forage fish may affect the survival and reproduction of piscivorous predators, especially seabirds. However, seabirds have evolved life history strategies to cope with natural fluctuations in prey and it is difficult to separate effects of fishing on seabirds from impacts of natural variability. To date, potential impacts of forage fisheries on seabirds have mainly been explored using ecosystem models that simplify seabird-forage-fish dynamics. We sought to explore how different forage fish harvest policies affect seabirds, accounting for structured population dynamics, life history specifics, and variation in forage fish dependencies across life stages; and how impacts vary across seabird and forage fish life histories. To explore these impacts, we developed an age-stage structured seabird model that incorporates seabird diet specialization, foraging behavior, and reproductive strategy, as well as different functional responses between prey availability and adult survival, juvenile survival, reproductive success, and breeder propensity. We parameterized this model for two contrasting seabird life histories: (1) a low fecundity, limited foraging range, diet specialist ("restricted"); and (2) a high fecundity, wide ranging, diet generalist ("flexible"). Each was paired with two different forage fish prey archetypes that were fished under various control rules. The restricted seabird population was expectedly less robust to constant fishing pressure than the flexible seabird, and this sensitivity was mainly due to functional response parameterization, rather than other life history parameters. Particularly, the restricted seabird was highly sensitive to the relationship between prey availability and adult survival but was not sensitive to the relationship between prey and reproductive success. An adaptive biomass-limit harvest rule for forage fish resulted in substantially higher seabird abundance compared to constant fishing across all scenarios, with minimal trade-offs to the fishery (depending on fishery management objectives). However, mechanisms governing the impact of the forage fish fishery on the seabird varied by forage fish type. Therefore, tailoring forage fish management strategies to forage fish life history can lead to mutually acceptable outcomes for fisheries and seabirds. If data or time are limited, an adaptive control rule is likely a safe bet for meeting seabird conservation objectives with limited impacts to fisheries.


Assuntos
Ecossistema , Pesqueiros , Animais , Biomassa , Aves , Conservação dos Recursos Naturais , Dinâmica Populacional
4.
Proc Biol Sci ; 287(1922): 20192781, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32156216

RESUMO

Asynchronous fluctuations in abundance between species with similar ecological roles can stabilize food webs and support coexistence. Sardine (Sardinops spp.) and anchovy (Engraulis spp.) have long been used as an example of this pattern because low-frequency variation in catches of these species appears to occur out of phase, suggesting that fisheries and generalist predators could be buffered against shifts in productivity of a single species. Using landings data and biomass and recruitment estimates from five regions, we find that species do not have equivalent peak abundances, suggesting that high abundance in one species does not compensate for low abundance in the other. We find that globally there is a stronger pattern of asynchrony in landings compared to biomass, such that landings data have exaggerated the patterns of asynchrony. Finally, we show that power to detect decadal asynchrony is poor, requiring a time series more than twice the length of the period of fluctuation. These results indicate that it is unlikely that the dynamics of these two species are compensatory enough to buffer fisheries and predators from changes in abundance, and that the measurements of asynchrony have largely been a statistical artefact of using short time series and landings data to infer ecology.


Assuntos
Peixes , Dinâmica Populacional , Animais , Biomassa , Ecossistema , Pesqueiros , Cadeia Alimentar
5.
Oecologia ; 180(1): 111-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26427990

RESUMO

Demographic, functional, or habitat diversity can confer stability on populations via portfolio effects (PEs) that integrate across multiple ecological responses and buffer against environmental impacts. The prevalence of these PEs in aquatic organisms is as yet unknown, and can be difficult to quantify; however, understanding mechanisms that stabilize populations in the face of environmental change is a key concern in ecology. Here, we examine PEs in Pacific herring (Clupea pallasii) in Puget Sound (USA) using a 40-year time series of biomass data for 19 distinct spawning population units collected using two survey types. Multivariate auto-regressive state-space models show independent dynamics among spawning subpopulations, suggesting that variation in herring production is partially driven by local effects at spawning grounds or during the earliest life history stages. This independence at the subpopulation level confers a stabilizing effect on the overall Puget Sound spawning stock, with herring being as much as three times more stable in the face of environmental perturbation than a single population unit of the same size. Herring populations within Puget Sound are highly asynchronous but share a common negative growth rate and may be influenced by the Pacific Decadal Oscillation. The biocomplexity in the herring stock shown here demonstrates that preserving spatial and demographic diversity can increase the stability of this herring population and its availability as a resource for consumers.


Assuntos
Biomassa , Ecossistema , Peixes , Animais , Ecologia , Peixes/fisiologia , Dinâmica Populacional , Reprodução , Washington
7.
Proc Natl Acad Sci U S A ; 112(21): 6648-52, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25848018

RESUMO

Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches.


Assuntos
Peixes , Cadeia Alimentar , Animais , Biomassa , Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Peixes/fisiologia , Modelos Biológicos , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...