Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 11(19): 3512-3523, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30133183

RESUMO

A detailed understanding of the diffusion mechanisms of ions in pure and doped ionic liquids remains an important aspect in the design of new ionic-liquid electrolytes for energy storage. To gain more insight into the widely used imidazolium-based ionic liquids, the relationship between viscosity, ionic conductivity, diffusion coefficients, and reorientational dynamics in the ionic liquid 3-methyl-1-methylimidazolium bis(trifluoromethanesulfonyl)imide (DMIM-TFSI) with and without lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) was examined. The diffusion coefficients for the DMIM+ cation and the role of ion aggregates were investigated by using the quasielastic neutron scattering (QENS) and neutron spin echo techniques. Two diffusion mechanisms are observed for the DMIM+ cation with and without Li-TFSI, that is, translational and local. The data additionally suggest that Li+ ion transport along with ion aggregates, known as the vehicle mechanism, may play a significant role in the ion diffusion process. These dielectric-spectroscopy investigations in a broad temperature and frequency range reveal a typical α-ß-relaxation scenario. The α relaxation mirrors the glassy freezing of the dipolar ions, and the ß relaxation exhibits the signatures of a Johari-Goldstein relaxation. In contrast to the translational mode detected by neutron scattering, arising from the decoupled faster motion of the DMIM+ ions, the α relaxation is well coupled to the dc charge transport, that is, the average translational motion of all three ion species in the material. The local diffusion process detected by QENS is only weakly dependent on temperature and viscosity and can be ascribed to the typical fast dynamics of glass-forming liquids.

2.
Inorg Chem ; 56(20): 12337-12347, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28960968

RESUMO

We report the synthesis of an air-stable nonporous coordination compound based on iron(II) centers, formate anions, and a 4,4'-bipyrazole (H2BPZ) ligand. Upon thermal treatment, a porous metal-organic framework (MOF) formed due to decomposition of the incorporated formate anions. This decomposition step and the following structural changes constituted a single-crystal to single-crystal transformation. The resulting [Fe(BPZ)] framework contained tetrahedrally coordinated iron(II) metal centers. The framework was sensitive toward oxidation by molecular oxygen even at temperatures of 183 K, as followed by oxygen sorption measurements and a color change from colorless to metallic black. The semiconductor properties of the oxidized material were studied by diffuse reflectance UV/vis/NIR spectroscopy and dielectric spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...