Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(3): 4811-4823, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593063

RESUMO

Fabrication of spherical lignin nanoparticles (LNPs) is opening more application opportunities for lignin. However, dissolution of LNPs at a strongly alkaline pH or in common organic solvent systems has prevented their surface functionalization in a dispersion state as well as processing and applications that require maintaining the particle morphology under harsh conditions. Here, we report a simple method to stabilize LNPs through intraparticle cross-linking. Bisphenol A diglycidyl ether (BADGE), a cross-linker that, like lignin, contains substituted benzene rings, is coprecipitated with softwood Kraft lignin to form hybrid LNPs (hy-LNPs). The hy-LNPs with a BADGE content ≤20 wt % could be intraparticle cross-linked in the dispersion state without altering their colloidal stability. Atomic force microscopy and quartz crystal microbalance with dissipation monitoring were used to show that the internally cross-linked particles were resistant to dissolution under strongly alkaline conditions and in acetone-water binary solvent that dissolved unmodified LNPs entirely. We further demonstrated covalent surface functionalization of the internally cross-linked particles at pH 12 through an epoxy ring-opening reaction to obtain particles with pH-switchable surface charge. Moreover, the hy-LNPs with BADGE content ≥30% allowed both inter- and intraparticle cross-linking at >150 °C, which enabled their application as waterborne wood adhesives with competitive dry/wet adhesive strength (5.4/3.5 MPa).

2.
Langmuir ; 36(51): 15592-15602, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33326249

RESUMO

The transformation of a molecularly complex and irregularly shaped lignin into a nanoscale spherical architecture is anticipated to play a pivotal role in the promotion of lignin valorization. From the standpoint of using colloidal lignin particles (CLPs) as building blocks for a diverse range of applications, it has become essential to study their interactions with soluble compounds of varied origin. However, the lack of model films with well-defined surface properties similar to those of CLPs has hindered fundamental studies using surface-sensitive techniques. Here, we report well-defined and stable thin films prepared from CLPs and demonstrate their suitability for investigation of surface phenomena. Direct adsorption on substrates coated with a cationic anchoring polymer resulted in uniform distribution of CLPs as shown with atomic force microscopy (AFM). Quartz crystal microbalance with dissipation monitoring (QCM-D) experiments revealed higher adsorbed mass of cationic lignin onto the CLP-coated substrate in comparison to the film prepared from dissolved lignin, suggesting preferential adsorption via the carboxylic acid enriched surfaces of CLPs. QCM-D further enabled detection of small changes such as particle swelling or partial dissolution not detectable via bulk methods such as light scattering. The CLP thin films remained stable until pH 8 and displayed only a low degree of swelling. Increasing the pH to 10 led to some instability, but their spherical geometry remained intact until complete dissolution was observed at pH 12. Particles prepared from aqueous acetone or aqueous tetrahydrofuran solution followed similar trends regarding adsorption, pH stability, and wetting, although the particle size affected the magnitude of adsorption. Overall, our results present a practical way to prepare well-defined CLP thin films that will be useful not only for fundamental studies but also as a platform for testing stability and interactions of lignin nanoparticles with materials of technical and biomedical relevance.

3.
ACS Sustain Chem Eng ; 8(10): 4167-4177, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32296616

RESUMO

Virus contamination of water is a threat to human health in many countries. Current solutions for inactivation of viruses mainly rely on environmentally burdensome chemical oxidation or energy-intensive ultraviolet irradiation, which may create toxic secondary products. Here, we show that renewable plant biomass-sourced colloidal lignin particles (CLPs) can be used as agglomeration agents to facilitate removal of viruses from water. We used dynamic light scattering (DLS), electrophoretic mobility shift assay (EMSA), atomic force microscopy and transmission electron microscopy (AFM, TEM), and UV spectrophotometry to quantify and visualize adherence of cowpea chlorotic mottle viruses (CCMVs) on CLPs. Our results show that CCMVs form agglomerated complexes with CLPs that, unlike pristine virus particles, can be easily removed from water either by filtration or centrifugation. Additionally, cationic particles formed by adsorption of quaternary amine-modified softwood kraft lignin on the CLPs were also evaluated to improve the binding interactions with these anionic viruses. We foresee that due to their moderate production cost, and high availability of lignin as a side-stream from biorefineries, CLPs could be an alternative water pretreatment material in a large variety of systems such as filters, packed columns, or flocculants.

4.
Biomacromolecules ; 21(5): 1875-1885, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31992046

RESUMO

Three-dimensional (3D) printing has been an emerging technique to fabricate precise scaffolds for biomedical applications. Cellulose nanofibril (CNF) hydrogels have attracted considerable attention as a material for 3D printing because of their shear-thinning properties. Combining cellulose nanofibril hydrogels with alginate is an effective method to enable cross-linking of the printed scaffolds in the presence of Ca2+ ions. In this work, spherical colloidal lignin particles (CLPs, also known as spherical lignin nanoparticles) were used to prepare CNF-alginate-CLP nanocomposite scaffolds. High-resolution images obtained by atomic force microscopy (AFM) showed that CLPs were homogeneously mixed with the CNF hydrogel. CLPs brought antioxidant properties to the CNF-alginate-CLP scaffolds in a concentration-dependent manner and increased the viscosity of the hydrogels at a low shear rate, which correspondingly provide better shape fidelity and printing resolution to the scaffolds. Interestingly, the CLPs did not affect the viscosity at high shear rates, showing that the shear thinning behavior typical for CNF hydrogels was retained, enabling easy printing. The CNF-alginate-CLP scaffolds demonstrated shape stability after printing, cross-linking, and storage in Dulbecco's phosphate buffer solution (DPBS +) containing Ca2+ and Mg2+ ions, up to 7 days. The 3D-printed scaffolds showed relative rehydration ratio values above 80% after freeze-drying, demonstrating a high water-retaining capability. Cell viability tests using hepatocellular carcinoma cell line HepG2 showed no negative effect of CLPs on cell proliferation. Fluorescence microscopy indicated that HepG2 cells grew not only on the surfaces but also inside the porous scaffolds. Overall, our results demonstrate that nanocomposite CNF-alginate-CLP scaffolds have high potential in soft-tissue engineering and regenerative-medicine applications.


Assuntos
Alginatos , Hidrogéis , Técnicas de Cultura de Células , Celulose , Lignina , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
5.
Front Chem ; 7: 545, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428603

RESUMO

Biorefineries need cost-efficient pretreatment processes that overcome the recalcitrance of plant biomass, while providing feasible valorization routes for lignin. Here we assessed aqueous ammonia for the separation of lignin from hydrothermally pretreated wheat straw prior to enzymatic saccharification. A combined severity parameter was used to determine the effects of ammonia concentration, treatment time and temperature on compositional and physicochemical changes [utilizing elemental analysis, cationic dye adsorption, FTIR spectroscopy, size-exclusion chromatography (SEC), and 31P nuclear magnetic resonance (NMR) spectroscopy] as well as enzymatic hydrolysability of straw. Pretreatment at the highest severity (20% NH3, 160°C) led to the maximum hydrolysability of 71% in a 24 h reaction time at an enzyme dosage of 15 FPU/g of pretreated straw. In contrast, hydrolysabilities remained low regardless of the severity when a low cellulase dosage was used, indicating competitive adsorption of cellulases on nitrogen-containing lignin. In turn, our results showed efficient adsorption of cationic, anionic and uncharged organic dyes on nitrogen-containing lignin, which opens new opportunities in practical water remediation applications.

6.
ChemSusChem ; 12(10): 2039-2054, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30933420

RESUMO

To liberate society from its dependence on fossil-based fuels and materials it is pivotal to explore components of renewable plant biomass in applications that benefit from their intrinsic biodegradability, safety, and sustainability. Lignin, a byproduct of the pulp and paper industry, is a plausible material for carrying various types of cargo in small- and large-scale applications. Herein, possibilities and constraints regarding the physical-chemical properties of the lignin source as well as modifications and processing required to render lignins suitable for the loading and release of pesticides, pharmaceuticals, and biological macromolecules is reviewed. In addition, the technical challenges, regulatory and toxicological aspects, and future research needed to realize some of the promises that nano- and microscaled lignin materials hold for a sustainable future are critically discussed.

7.
Nat Commun ; 9(1): 2300, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895870

RESUMO

Dehydration reactions proceed readily in water-filled biological cells. Development of biocatalysts that mimic such compartmentalized reactions has been cumbersome due to the lack of low-cost nanomaterials and associated technologies. Here we show that cationic lignin nanospheres function as activating anchors for hydrolases, and enable aqueous ester synthesis by forming spatially confined biocatalysts upon self-assembly and drying-driven aggregation in calcium alginate hydrogel. Spatially confined microbial cutinase and lipase retain 97% and 70% of their respective synthetic activities when the volume ratio of water to hexane increases from 1:1 to 9:1 in the reaction medium. The activity retention of industrially most frequently used acrylic resin-immobilized Candida antarctica lipase B is only 51% under similar test conditions. Overall, our findings enable fabrication of robust renewable biocatalysts for aqueous ester synthesis, and provide insight into the compartmentalization of diverse heterogeneous catalysts.


Assuntos
Ésteres/química , Proteínas Fúngicas/química , Lignina/química , Lipase/química , Nanosferas , Adsorção , Alginatos/química , Biocatálise , Materiais Biocompatíveis/química , Candida/enzimologia , Catálise , Coloides/química , Enzimas Imobilizadas/química , Hidrogéis/química , Hidrólise , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Água
8.
Biotechnol Bioeng ; 113(12): 2605-2613, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27260990

RESUMO

This article compares the processes for wheat straw lignocellulose fractionation by percolation, counter-current progressing batch percolation and batch reaction at low NaOH-loadings (3-6% of DM). The flow-through processes were found to improve delignification and subsequent enzymatic saccharification, reduce NaOH-consumption and allow reduction of thermal severity, whereas hemicellulose dissolution was unaffected. However, contrary to previous expectations, a counter-current process did not provide additional benefits to regular percolation. The compressibility and flow properties of a straw bed were determined and used for simulation of the packing density profile and dynamic pressure in an industrial scale column. After dissolution of 30% of the straw DM by delignification, a pressure drop above 100 kPa m-1 led to clogging of the flow due to compaction of straw. Accordingly, the maximum applicable feed pressure and volumetric straw throughput was determined as a function of column height, indicating that a 10 m column can be operated at a maximum feed pressure of 530 kPa, corresponding to an operation time of 50 min and a throughput of 163 kg m-3 h-1 . Biotechnol. Bioeng. 2016;113: 2605-2613. © 2016 Wiley Periodicals, Inc.


Assuntos
Lignina/química , Lignina/isolamento & purificação , Extração Líquido-Líquido/métodos , Complexos Multienzimáticos/química , Componentes Aéreos da Planta/química , Triticum/química , Hidrólise , Reologia/métodos , Hidróxido de Sódio/química , Solubilidade , Estresse Mecânico , Viscosidade
9.
Biotechnol Biofuels ; 9: 18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26816528

RESUMO

BACKGROUND: Explaining the reduction of hydrolysis rate during lignocellulose hydrolysis is a challenge for the understanding and modelling of the process. This article reports the changes of cellulose and lignin surface areas, porosity and the residual cellulase activity during the hydrolysis of autohydrolysed wheat straw and delignified wheat straw. The potential rate-constraining mechanisms are assessed with a simplified kinetic model and compared to the observed effects, residual cellulase activity and product inhibition. RESULTS: The reaction rate depended exclusively on the degree of hydrolysis, while enzyme denaturation or time-dependent changes in substrate hydrolysability were absent. Cellulose surface area decreased linearly with hydrolysis, in correlation with total cellulose content. Lignin surface area was initially decreased by the dissolution of phenolics and then remained unchanged. The dissolved phenolics did not contribute to product inhibition. The porosity of delignified straw was decreased during hydrolysis, but no difference in porosity was detected during the hydrolysis of autohydrolysed straw. CONCLUSIONS: Although a hydrolysis-dependent increase of non-productive binding capacity of lignin was not apparent, the dependence of hydrolysis maxima on the enzyme dosage was best explained by partial irreversible product inhibition. Cellulose surface area correlated with the total cellulose content, which is thus an appropriate approximation of the substrate concentration for kinetic modelling. Kinetic models of cellulose hydrolysis should be simplified enough to include reversible and irreversible product inhibition and reduction of hydrolysability, as well as their possible non-linear relations to hydrolysis degree, without overparameterization of particular factors.

10.
Bioresour Technol ; 169: 80-87, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25033327

RESUMO

A new colorimetric method for determining the surface-accessible acidic lignin hydroxyl groups in lignocellulose solid fractions was developed. The method is based on selective adsorption of Azure B, a basic dye, onto acidic hydroxyl groups of lignin. Selectivity of adsorption of Azure B on lignin was demonstrated using lignin and cellulose materials as adsorbents. Adsorption isotherms of Azure B on wheat straw (WS), sugarcane bagasse (SGB), oat husk, and isolated lignin materials were determined. The maximum adsorption capacities predicted by the Langmuir isotherms were used to calculate the amounts of surface-accessible acidic hydroxyl groups. WS contained 1.7-times more acidic hydroxyls (0.21 mmol/g) and higher surface area of lignin (84 m(2)/g) than SGB or oat husk materials. Equations for determining the amount of surface-accessible acidic hydroxyls in solid fractions of the three plant materials by a single point measurement were developed. A method for high-throughput characterization of lignocellulosic materials is now available.


Assuntos
Ácidos/química , Corantes/química , Radical Hidroxila/química , Lignina/química , Adsorção , Avena/química , Corantes Azur/química , Cátions , Celulose/química , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Tamanho da Partícula , Saccharum/química , Propriedades de Superfície , Temperatura , Fatores de Tempo , Triticum/química
11.
Bioresour Technol ; 133: 522-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23455224

RESUMO

Sequential fractionation of extractive-free maize stems was carried out using two mild alkaline extractions (0.5 and 2 M NaOH, 20°C, 24h) before and after endoglucanase treatment. This procedure provided two lignin-carbohydrate fractions (LC1 and LC2) recovered after each alkali treatment. LC1 and LC2 contained 39% and 8% of the total lignin amount, respectively. These two fractions contained structurally distinct lignin molecules. While the content of resistant interunit bonds in lignin was 77% in LC1, it was increased up to 98% in LC2. Not unexpectedly, both alkali-soluble fractions contained substantial amount of p-coumaric and ferulic acids ether-linked to lignins. These results outline heterogeneity of maize stem lignins related to fractionation of grass materials.


Assuntos
Álcalis/química , Carboidratos/isolamento & purificação , Celulase/metabolismo , Fracionamento Químico/métodos , Lignina/isolamento & purificação , Caules de Planta/química , Zea mays/química , Carboidratos/química , Ácidos Cumáricos/isolamento & purificação , Lignina/química , Monossacarídeos/análise , Propionatos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...