RESUMO
Phosphate fertilizers are applied to the soil surface, especially in vineyards in production in subtropical regions. Nowadays, phosphorus (P) is not incorporated into the soil to avoid mechanical damage to the root system in orchards. However, over the years, successive surface P applications can increase the P content only in the topsoil, maintaining low P levels in the subsurface, which can reduce its use by grapevines. For this reason, there is a need to propose strategies to increase the P content in the soil profile of established orchards. The study aimed to evaluate the effect of management strategies to (i) increase the P content in the soil profile; (ii) enhance the grape production; and (iii) maintain the grape must composition. An experiment on the 'Pinot Noir' grape in full production was carried out over three crop seasons. The treatments were without P application (C), P on the soil surface without incorporation (SP), P incorporated at 20 cm (IP20), P incorporated at 40 cm (IP40), and twice the P dose incorporated at 40 cm (2IP40). The P concentration in leaves at flowering and veraison, P content in the soil, grape production and its components, and chemical parameters of the grape must (total soluble solids, total polyphenols, total titratable acidity, total anthocyanins, and pH) were evaluated. The P concentration in leaves did not differ among the P application modes. The application of P associated with soil mobilization, especially at 20 cm depth, increased grape production. The P application modes did not affect the values of the chemical parameters of the grape must except for the total anthocyanins, which had the highest values when the vines were subjected to 2IP40. Finally, the P application and incorporation into the soil profile was an efficient strategy for increasing the grape production in full production vineyards.
RESUMO
Vineyard soils normally do not provide the amount of nitrogen (N) necessary for red wine production. Traditionally, the N concentration in leaves guides the N fertilization of vineyards to reach high grape yields and chemical composition under the ceteris paribus assumption. Moreover, the carryover effects of nutrients and carbohydrates stored by perennials such as grapevines are neglected. Where a well-documented database is assembled, machine learning (ML) methods can account for key site-specific features and carryover effects, impacting the performance of grapevines. The aim of this study was to predict, using ML tools, N management from local features to reach high berry yield and quality in 'Alicante Bouschet' vineyards. The 5-year (2015-2019) fertilizer trial comprised six N doses (0-20-40-60-80-100 kg N ha-1) and three regimes of irrigation. Model features included N dosage, climatic indices, foliar N application, and stem diameter of the preceding season, all of which were indices of the carryover effects. Accuracy of ML models was the highest with a yield cutoff of 14 t ha-1 and a total anthocyanin content (TAC) of 3900 mg L-1. Regression models were more accurate for total soluble solids (TSS), total titratable acidity (TTA), pH, TAC, and total phenolic content (TPC) in the marketable grape yield. The tissue N ranges differed between high marketable yield and TAC, indicating a trade-off about 24 g N kg-1 in the diagnostic leaf. The N dosage predicted varied from 0 to 40 kg N ha-1 depending on target variable, this was calculated from local features and carryover effects but excluded climatic indices. The dataset can increase in size and diversity with the collaboration of growers, which can help to cross over the numerous combinations of features found in vineyards. This research contributes to the rational use of N fertilizers, but with the guarantee that obtaining high productivity must be with adequate composition.