Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 29(6): 607-609, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38135605

RESUMO

Fluctuations in temperature severely impact crop yield and trigger various plant response mechanisms. In a recent study, Zhou et al. discovered a non-canonical role of autophagy in mediating Golgi apparatus restoration after short-term heat stress (HS). Their results further suggest a critical, yet previously unknown, mechanism of autophagy-related (ATG)-8 in Golgi reassembly after HS.


Assuntos
Autofagia , Complexo de Golgi , Resposta ao Choque Térmico , Complexo de Golgi/metabolismo , Complexo de Golgi/fisiologia , Autofagia/fisiologia , Resposta ao Choque Térmico/fisiologia , Temperatura Alta
2.
Trends Plant Sci ; 29(4): 388-390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38102047

RESUMO

Aluminum (Al) toxicity is a crucial limiting factor for crop growth in acid soils. Recently, Liu et al. demonstrated that the root microbiota of rice modulates the responses to Al toxicity and phosphorus limitation, offering intriguing insights into microbiome function and opening new research opportunities.


Assuntos
Microbiota , Oryza , Solo , Plantas , Fósforo , Alumínio , Concentração de Íons de Hidrogênio , Raízes de Plantas
3.
J Plant Physiol ; 292: 154163, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118303

RESUMO

Stomata, small hydromechanical valves in the leaf epidermis, are fundamental in regulating gas exchange and water loss between plants and the environment. Stomatal development involves a series of coordinated events ranging from the initial cell division that determines the meristemoid mother cells to forming specialized structures such as guard cells. These events are orchestrated by the transcription factors SPEECHLESS, FAMA, and MUTE through signaling networks. The role of plant hormones (e.g., abscisic acid, jasmonic acid, and brassinosteroids) in regulating stomatal development has been elucidated through these signaling cascades. In addition, environmental factors, such as light availability and CO2 concentration, also regulate the density and distribution of stomata in leaves, ultimately affecting overall water use efficiency. In this review, we highlight the mechanisms underlying stomatal development, connecting key signaling processes that activate or inhibit cell differentiation responsible for forming guard cells in the leaf epidermis. The factors responsible for integrating transcription factors, hormonal responses, and the influence of climatic factors on the signaling network that leads to stomatal development in plants are further discussed. Understanding the intricate connections between these factors, including the metabolic regulation of plant development, may enable us to maximize plant productivity under specific environmental conditions in changing climate scenarios.


Assuntos
Folhas de Planta , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Folhas de Planta/metabolismo , Plantas/metabolismo , Água/metabolismo , Fatores de Transcrição/metabolismo , Células Epidérmicas/metabolismo
4.
Trends Plant Sci ; 28(10): 1092-1094, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37407411

RESUMO

The elucidation and removal of photorespiratory metabolic constraints will be necessary to improve crop yield in the next agricultural revolution. Fu et al. studied metabolic fluxes in the photorespiratory pathway and report that serine is the major export, whereas dynamic alterations in glycine pools orchestrate CO2 assimilation during the induction and relaxation of photorespiration.


Assuntos
Glicina , Fotossíntese , Glicina/metabolismo , Serina/metabolismo , Respiração Celular , Folhas de Planta/metabolismo , Dióxido de Carbono/metabolismo
5.
Trends Plant Sci ; 28(10): 1113-1123, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37268488

RESUMO

For over 2500 years, considerable agronomic interest has been paid to soil fertility. Both crop domestication and the Green Revolution shifted photoperiodism and the circadian clock in cultivated species, although this contributed to an increase in the demand for chemical fertilisers. Thus, the uptake of nutrients depends on light signalling, whereas diel growth and circadian rhythms are affected by nutrient levels. Here, we argue that day length and circadian rhythms may be central regulators of the uptake and usage of nutrients, also modulating responses to toxic elements (e.g., aluminium and cadmium). Thus, we suggest that knowledge in this area might assist in developing next-generation crops with improved uptake and use efficiency of nutrients.


Assuntos
Relógios Circadianos , Fotoperíodo , Ritmo Circadiano/fisiologia , Produtos Agrícolas
6.
Trends Plant Sci ; 28(5): 597-608, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822959

RESUMO

Through domestication of wild species, humans have induced large changes in the developmental and circadian clocks of plants. As a result of these changes, modern crops are more productive and adaptive to contrasting environments from the center of origin of their wild ancestors, albeit with low genetic variability and abiotic stress tolerance. Likewise, a complete restructuring of plant metabolic timekeeping probably occurred during crop domestication. Here, we highlight that contrasting timings among organs in wild relatives of crops allowed them to recognize environmental adversities faster. We further propose that connections among biological clocks, which were established during plant domestication, may represent a fundamental source of genetic variation to improve crop resilience and yield.


Assuntos
Relógios Biológicos , Produtos Agrícolas , Humanos , Produtos Agrícolas/genética , Domesticação
7.
J Biotechnol ; 359: 1-14, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36126804

RESUMO

Photosynthesis is responsible for the primary productivity and maintenance of life on Earth, boosting biological activity and contributing to the maintenance of the environment. In the past, traditional crop improvement was considered sufficient to meet food demands, but the growing demand for food coupled with climate change has modified this scenario over the past decades. However, advances in this area have not focused on photosynthesis per se but rather on fixed carbon partitioning. In short, other approaches must be used to meet an increasing agricultural demand. Thus, several paths may be followed, from modifications in leaf shape and canopy architecture, improving metabolic pathways related to CO2 fixation, the inclusion of metabolic mechanisms from other species, and improvements in energy uptake by plants. Given the recognized importance of photosynthesis, as the basis of the primary productivity on Earth, we here present an overview of the latest advances in attempts to improve plant photosynthetic performance. We focused on points considered key to the enhancement of photosynthesis, including leaf shape development, RuBisCO reengineering, Calvin-Benson cycle optimization, light use efficiency, the introduction of the C4 cycle in C3 plants and the inclusion of other CO2 concentrating mechanisms (CCMs). We further provide compelling evidence that there is still room for further improvements. Finally, we conclude this review by presenting future perspectives and possible new directions on this subject.


Assuntos
Ribulose-Bifosfato Carboxilase , Biologia Sintética , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Plantas/metabolismo , Carbono/metabolismo
8.
Trends Plant Sci ; 27(11): 1084-1086, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35973903

RESUMO

Nitrogen (N) nutrition and meiosis demand large amounts of energy and widely affect crop yield. Recently, Yang and colleagues connected both processes by demonstrating that meiosis initiation depends on the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) system, whereas meiotic defects of the etfß mutant can be rescued using N supplementation.


Assuntos
Aminoácidos , Ubiquinona , Aminoácidos/metabolismo , Meiose/genética , Nitrogênio , Sementes/genética , Sementes/metabolismo
9.
J Exp Bot ; 73(12): 4113-4128, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35383842

RESUMO

Auxin is an important hormone playing crucial roles during fruit growth and ripening; however, the metabolic impact of changes in auxin signalling during tomato (Solanum lycopersicum L.) ripening remains unclear. Here, we investigated the significance of changes in auxin signalling during different stages of fruit development by analysing changes in tomato fruit quality and primary metabolism using mutants with either lower or higher auxin sensitivity [diageotropica (dgt) and entire mutants, respectively]. Altered auxin sensitivity modifies metabolism, through direct impacts on fruit respiration and fruit growth. We verified that the dgt mutant plants exhibit reductions in fruit set, total fruit dry weight, fruit size, number of seeds per fruit, and fresh weight loss during post-harvest. Sugar accumulation was associated with delayed fruit ripening in dgt, probably connected with reduced ethylene levels and respiration, coupled with a lower rate of starch degradation. In contrast, despite exhibiting parthenocarpy, increased auxin perception (entire) did not alter fruit ripening, leading to only minor changes in primary metabolism. By performing a comprehensive analysis, our results connect auxin signalling and metabolic changes during tomato fruit development, indicating that reduced auxin signalling led to extensive changes in sugar concentration and starch metabolism during tomato fruit ripening.


Assuntos
Solanum lycopersicum , Ciclofilinas/genética , Etilenos/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Açúcares/metabolismo
10.
J Hazard Mater ; 432: 128704, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313159

RESUMO

Aluminium (Al), a limiting factor for crop productivity in acidic soils (pH ≤ 5.5), imposes drastic constraints for food safety in developing countries. The major mechanisms that allow plants to cope with Al involve manipulations of organic acids metabolism and DNA-checkpoints. When assumed individually both approaches have been insufficient to overcome Al toxicity. On analysing the centre of origin of most cultivated plants, we hypothesised that day-length seems to be a pivotal agent modulating Al tolerance across distinct plant species. We observed that with increasing distance from the Equator, Al tolerance decreases, suggesting a relationship with the photoperiod. We verified that long-day (LD) species are generally more Al-sensitive than short-day (SD) species, whereas genetic conversion of tomato for SD growth habit boosts Al tolerance. Reduced Al tolerance correlates with DNA-checkpoint activation under LD. Furthermore, DNA-checkpoint-related genes are under positive selection in Arabidopsis accessions from regions with shorter days, suggesting that photoperiod act as a selective barrier for Al tolerance. A diel regulation and genetic diversity affect Al tolerance, suggesting that day-length orchestrates Al tolerance. Altogether, photoperiodic control of Al tolerance might contribute to solving the historical obstacle that imposes barriers for developing countries to reach a sustainable agriculture.


Assuntos
Arabidopsis , Fotoperíodo , Alumínio/toxicidade , Arabidopsis/metabolismo , DNA , Regulação da Expressão Gênica de Plantas , Plantas/metabolismo
11.
J Hazard Mater ; 430: 128366, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168102

RESUMO

Acidic soils are a major limiting factor for food production in many developing countries. High concentrations of soluble Al cations, particularly Al3+, inhibit cell division and root elongation in plants. Al3+ damages several biomolecules, including DNA, impairing gene expression and cell cycle progression. Notably, the loss-of-function mutants of DNA checkpoints may mediate Al tolerance. Furthermore, mitochondrial organic acids play key roles in neutralizing Al3+ within the cell and around the rhizosphere. Here, we provide knowledge synthesis on interactions between checkpoints related to mitochondrial organic acid homeostasis and DNA integrity mediating Al tolerance in land plants. These interactions, coupled with remarkable advances in tools related to metabolism and cell cycle, may facilitate the development of next-generation productive crops under Al toxicity.


Assuntos
Alumínio , Solo , Produtos Agrícolas , DNA , Raízes de Plantas/metabolismo , Rizosfera
12.
Plant Commun ; 3(1): 100246, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35059627

RESUMO

Efficient use of natural resources (e.g., light, water, and nutrients) can be improved with a tailored developmental program that maximizes the lifetime and fitness of plants. In plant shoots, a developmental phase represents a time window in which the meristem triggers the development of unique morphological and physiological traits, leading to the emergence of leaves, flowers, and fruits. Whereas developmental phases in plant shoots have been shown to enhance food production in crops, this phenomenon has remained poorly investigated in roots. In light of recent advances, we suggest that root development occurs in three main phases: root apical meristem appearance, foraging, and senescence. We provide compelling evidence suggesting that these phases are regulated by at least four developmental pathways: autonomous, non-autonomous, hormonal, and periodic. Root developmental pathways differentially coordinate organ plasticity, promoting morphological alterations, tissue regeneration, and cell death regulation. Furthermore, we suggest how nutritional checkpoints may allow progression through the developmental phases, thus completing the root life cycle. These insights highlight novel and exciting advances in root biology that may help maximize the productivity of crops through more sustainable agriculture and the reduced use of chemical fertilizers.


Assuntos
Meristema , Raízes de Plantas , Folhas de Planta , Raízes de Plantas/metabolismo , Brotos de Planta , Plantas
13.
J Plant Physiol ; 263: 153460, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34217838

RESUMO

Ethylene is a gaseous hormone with a well-established role in the regulation of plant growth and development. However, its role in the modulation of carbon assimilation and central metabolism remains unclear. Here, we investigated the morphophysiological and biochemical responses of tomato plants (Solanum lycopersicum) following the application of ethylene in the form of ethephon (CEPA - 2-chloroethylphosphonic acid), forcing the classical triple response phenotype. CEPA-treated plants were characterized by growth inhibition, as revealed by significant reductions in both shoot and root dry weights, coupled with a reduced number of leaves and lower specific leaf area. Growth inhibition was associated with a reduction in carbon assimilation due to both lower photosynthesis rates and stomatal conductance, coupled with impairments in carbohydrate turnover. Furthermore, exogenous ethylene led to the accumulation of cell wall compounds (i.e., cellulose and lignin) and phenolics, indicating that exposure to exogenous ethylene also led to changes in specialized metabolism. Collectively, our findings demonstrate that exogenous ethylene disrupts plant growth and leaf structure by affecting both central and specialized metabolism, especially that involved in carbohydrate turnover and cell wall biosynthesis, ultimately leading to metabolic responses that mimic stress situations.


Assuntos
Etilenos/metabolismo , Fotossíntese/fisiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
14.
Trends Plant Sci ; 26(11): 1093-1095, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34303605

RESUMO

The precise regulation of stomata is critical to plant growth and development, especially under drought conditions. Two recent studies (Dou et al., Xu et al.) shed new light on stomata physiology in response to dynamic environmental conditions, revealing novel key mechanisms related to microtubule dynamics and energy sensing within the guard cells.


Assuntos
Secas , Estômatos de Plantas , Plantas
15.
Front Plant Sci ; 11: 610307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519866

RESUMO

Although boron (B) is an element that has long been assumed to be an essential plant micronutrient, this assumption has been recently questioned. Cumulative evidence has demonstrated that the players associated with B uptake and translocation by plant roots include a sophisticated set of proteins used to cope with B levels in the soil solution. Here, we summarize compelling evidence supporting the essential role of B in mediating plant developmental programs. Overall, most plant species studied to date have exhibited specific B transporters with tight genetic coordination in response to B levels in the soil. These transporters can uptake B from the soil, which is a highly uncommon occurrence for toxic elements. Moreover, the current tools available to determine B levels cannot precisely determine B translocation dynamics. We posit that B plays a key role in plant metabolic activities. Its importance in the regulation of development of the root and shoot meristem is associated with plant developmental phase transitions, which are crucial processes in the completion of their life cycle. We provide further evidence that plants need to acquire sufficient amounts of B while protecting themselves from its toxic effects. Thus, the development of in vitro and in vivo approaches is required to accurately determine B levels, and subsequently, to define unambiguously the function of B in terrestrial plants.

16.
Trends Plant Sci ; 23(8): 731-747, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29934041

RESUMO

Oscillation in energy levels is widely variable in dividing and differentiated cells. To synchronize cell proliferation and energy fluctuations, cell cycle-related proteins have been implicated in the regulation of mitochondrial energy-generating pathways in yeasts and animals. Plants have chloroplasts and mitochondria, coordinating the cell energy flow. Recent findings suggest an integrated regulation of these organelles and the nuclear cell cycle. Furthermore, reports indicate a set of interactions between the cell cycle and energy metabolism, coordinating the turnover of proteins in plants. Here, we discuss how cell cycle-related proteins directly interact with energy metabolism-related proteins to modulate energy homeostasis and cell cycle progression. We provide interfaces between cell cycle and energy metabolism-related proteins that could be explored to maximize plant yield.


Assuntos
Ciclo Celular , Metabolismo Energético , Plantas/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Cloroplastos/metabolismo , Mitocôndrias/metabolismo , Fotossíntese , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...