Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766054

RESUMO

Identifying the causal variants and mechanisms that drive complex traits and diseases remains a core problem in human genetics. The majority of these variants have individually weak effects and lie in non-coding gene-regulatory elements where we lack a complete understanding of how single nucleotide alterations modulate transcriptional processes to affect human phenotypes. To address this, we measured the activity of 221,412 trait-associated variants that had been statistically fine-mapped using a Massively Parallel Reporter Assay (MPRA) in 5 diverse cell-types. We show that MPRA is able to discriminate between likely causal variants and controls, identifying 12,025 regulatory variants with high precision. Although the effects of these variants largely agree with orthogonal measures of function, only 69% can plausibly be explained by the disruption of a known transcription factor (TF) binding motif. We dissect the mechanisms of 136 variants using saturation mutagenesis and assign impacted TFs for 91% of variants without a clear canonical mechanism. Finally, we provide evidence that epistasis is prevalent for variants in close proximity and identify multiple functional variants on the same haplotype at a small, but important, subset of trait-associated loci. Overall, our study provides a systematic functional characterization of likely causal common variants underlying complex and molecular human traits, enabling new insights into the regulatory grammar underlying disease risk.

2.
World Neurosurg ; 174: e26-e34, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36805503

RESUMO

OBJECTIVE: Group patients who required open surgery for metastatic breast cancer to the spine by functional level and metastatic disease characteristics to identify factors that predispose to poor outcomes. METHODS: A retrospective analysis included patients managed at 2 tertiary referral centers from 2008 to 2020. The primary outcome was a 90-day adverse event. A 2-step unsupervised cluster analysis stratified patients into cohorts using function at presentation, preoperative spine radiation, structural instability, epidural spinal cord compression (ESCC), neural deficits, and tumor location/hormone status. Comparisons were performed using χ2 test and one-way analysis of variance. RESULTS: Five patient "clusters" were identified. High function (HIGH) had thoracic metastases and an Eastern Cooperative Oncology Group (ECOG) score of 1.0 ± 0.8. Low function/irradiated (LOW + RADS) had preoperative radiation and the lowest Karnofsky scores (56.0 ± 10.6). Estrogen receptor or progesterone receptor (ER/PR) positive patients had >90% estrogen/progesterone positivity and moderate Karnofsky scores (74.0 ± 11.5). Lumbar/noncompressive (NON-COMP) had the fewest patients with ESCC grade 2 or 3 epidural disease (42.1%, P < 0.001). Low function/neurologic deficits (LOW + NEURO) had ESCC grade 2 or 3 disease and neurologic deficits. Adverse event rates were 25.0% in the HIGH group, 73.3% in LOW + RADS, 24.0% in ER/PR, 31.6% in NON-COMP, and 60.0% in LOW + NEURO (P = 0.003). CONCLUSIONS: Function at presentation, tumor hormone signature, radiation history, and epidural compression delineated postoperative trajectory. We believe our results can aid in expectation management and the identification of at-risk patients who may merit closer surveillance following surgical intervention.


Assuntos
Neoplasias da Mama , Leucemia Mieloide Aguda , Compressão da Medula Espinal , Neoplasias da Coluna Vertebral , Humanos , Feminino , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Estudos Retrospectivos , Inteligência Artificial , Neoplasias da Coluna Vertebral/secundário , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/cirurgia , Compressão da Medula Espinal/patologia , Análise por Conglomerados
3.
Neurosurgery ; 92(1): 83-91, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305664

RESUMO

BACKGROUND: Breast cancer molecular features and modern therapies are not included in spine metastasis prediction algorithms. OBJECTIVE: To examine molecular differences and the impact of postoperative systemic therapy to improve prognosis prediction for spinal metastases surgery and aid surgical decision making. METHODS: This is a retrospective multi-institutional study of patients who underwent spine surgery for symptomatic breast cancer spine metastases from 2008 to 2021 at the Massachusetts General Hospital and Brigham and Women's Hospital. We studied overall survival, stratified by breast cancer molecular subtype, and calculated hazard ratios (HRs) adjusting for demographics, tumor characteristics, treatments, and laboratory values. We tested the performance of established models (Tokuhashi, Bauer, Skeletal Oncology Research Group, New England Spinal Metastases Score) to predict and compare all-cause. RESULTS: A total of 98 patients surgically treated for breast cancer spine metastases were identified (100% female sex; median age, 56 years [IQR, 36-84 years]). The 1-year probabilities of survival for hormone receptor positive, hormone receptor positive/human epidermal growth factor receptor 2+, human epidermal growth factor receptor 2+, and triple-negative breast cancer were 63% (45 of 71), 83% (10 of 12), 0% (0 of 3), and 12% (1 of 8), respectively ( P < .001). Patients with triple-negative breast cancer had a higher proportion of visceral metastases, brain metastases, and poor physical activity at baseline. Postoperative chemotherapy and endocrine therapy were associated with prolonged survival. The Skeletal Oncology Research Group prognostic model had the highest discrimination (area under the receiver operating characteristic, 0.77 [95% CI, 0.73-0.81]). The performance of all prognostic scores improved when preoperative molecular data and postoperative systemic treatment plans was considered. CONCLUSION: Spine metastases risk tools were able to predict prognosis at a significantly higher degree after accounting for molecular features which guide treatment response.


Assuntos
Neoplasias da Mama , Neoplasias da Coluna Vertebral , Neoplasias de Mama Triplo Negativas , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Prognóstico , Estudos Retrospectivos , Medição de Risco , Neoplasias da Coluna Vertebral/secundário
4.
Proc Natl Acad Sci U S A ; 119(34): e2207392119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969771

RESUMO

Regulatory relationships between transcription factors (TFs) and their target genes lie at the heart of cellular identity and function; however, uncovering these relationships is often labor-intensive and requires perturbations. Here, we propose a principled framework to systematically infer gene regulation for all TFs simultaneously in cells at steady state by leveraging the intrinsic variation in the transcriptional abundance across single cells. Through modeling and simulations, we characterize how transcriptional bursts of a TF gene are propagated to its target genes, including the expected ranges of time delay and magnitude of maximum covariation. We distinguish these temporal trends from the time-invariant covariation arising from cell states, and we delineate the experimental and technical requirements for leveraging these small but meaningful cofluctuations in the presence of measurement noise. While current technology does not yet allow adequate power for definitively detecting regulatory relationships for all TFs simultaneously in cells at steady state, we investigate a small-scale dataset to inform future experimental design. This study supports the potential value of mapping regulatory connections through stochastic variation, and it motivates further technological development to achieve its full potential.


Assuntos
Regulação da Expressão Gênica , Modelos Biológicos , Fatores de Transcrição , Simulação por Computador , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Nature ; 607(7917): 176-184, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594906

RESUMO

Gene regulation in the human genome is controlled by distal enhancers that activate specific nearby promoters1. A proposed model for this specificity is that promoters have sequence-encoded preferences for certain enhancers, for example, mediated by interacting sets of transcription factors or cofactors2. This 'biochemical compatibility' model has been supported by observations at individual human promoters and by genome-wide measurements in Drosophila3-9. However, the degree to which human enhancers and promoters are intrinsically compatible has not yet been systematically measured, and how their activities combine to control RNA expression remains unclear. Here we design a high-throughput reporter assay called enhancer × promoter self-transcribing active regulatory region sequencing (ExP STARR-seq) and applied it to examine the combinatorial compatibilities of 1,000 enhancer and 1,000 promoter sequences in human K562 cells. We identify simple rules for enhancer-promoter compatibility, whereby most enhancers activate all promoters by similar amounts, and intrinsic enhancer and promoter activities multiplicatively combine to determine RNA output (R2 = 0.82). In addition, two classes of enhancers and promoters show subtle preferential effects. Promoters of housekeeping genes contain built-in activating motifs for factors such as GABPA and YY1, which decrease the responsiveness of promoters to distal enhancers. Promoters of variably expressed genes lack these motifs and show stronger responsiveness to enhancers. Together, this systematic assessment of enhancer-promoter compatibility suggests a multiplicative model tuned by enhancer and promoter class to control gene transcription in the human genome.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Elementos Facilitadores Genéticos/genética , Humanos , Regiões Promotoras Genéticas/genética , RNA/biossíntese , RNA/genética , Fatores de Transcrição/metabolismo
6.
Clin Nutr ; 41(12): 3069-3076, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33934924

RESUMO

BACKGROUND & AIMS: Early reports suggest significant difficulty with enteral feeding in critically ill COVID-19 patients. This study aimed to characterize the prevalence, clinical manifestations, and outcomes of feeding intolerance in critically ill patients with COVID-19. METHODS: We examined 323 adult patients with COVID-19 admitted to the intensive care units (ICUs) of Massachusetts General Hospital between March 11 and June 28, 2020 who received enteral nutrition. Systematic chart review determined prevalence, clinical characteristics, and hospital outcomes (ICU complications, length of stay, and mortality) of feeding intolerance. RESULTS: Feeding intolerance developed in 56% of the patients and most commonly manifested as large gastric residual volumes (83.9%), abdominal distension (67.2%), and vomiting (63.9%). Length of intubation (OR 1.05, 95% CI 1.03-1.08), ≥1 GI symptom on presentation (OR 0.76, 95% CI 0.59-0.97), and severe obesity (OR 0.29, 95% CI 0.13-0.66) were independently associated with development of feeding intolerance. Compared to feed-tolerant patients, patients with incident feeding intolerance were significantly more likely to suffer cardiac, renal, hepatic, and hematologic complications during their hospitalization. Feeding intolerance was similarly associated with poor outcomes including longer ICU stay (median [IQR] 21.5 [14-30] vs. 15 [9-22] days, P < 0.001), overall hospitalization time (median [IQR] 30.5 [19-42] vs. 24 [15-35], P < 0.001) and in-hospital mortality (33.9% vs. 16.1%, P < 0.001). Feeding intolerance was independently associated with an increased risk of death (HR 3.32; 95% CI 1.97-5.6). CONCLUSIONS: Feeding intolerance is a frequently encountered complication in critically ill COVID-19 patients in a large tertiary care experience and is associated with poor outcomes.


Assuntos
COVID-19 , Estado Terminal , Adulto , Humanos , Recém-Nascido , Estado Terminal/terapia , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/terapia , Unidades de Terapia Intensiva , Nutrição Enteral/efeitos adversos , Mortalidade Hospitalar
7.
Acta Biomater ; 26: 1-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26283165

RESUMO

A critical challenge in tissue regeneration is to develop constructs that effectively integrate with the host tissue. Here, we describe a composite, laser micromachined, collagen-alginate construct containing human mesenchymal stem cells (hMSCs) for tissue repair applications. Collagen type I was fashioned into laminated collagen sheets to form a mechanically robust fascia that was subsequently laser micropatterned with pores of defined dimension and spatial distribution as a means to modulate mechanical behavior and promote tissue integration. Significantly, laser micromachined patterned constructs displayed both substantially greater compliance and suture retention strength than non-patterned constructs. hMSCs were loaded in an RGD-functionalized alginate gel modified to degrade in vivo. Over a 7 day observation period in vitro, high cell viability was observed with constant levels of VEGF, PDGF-ß and MCP-1 protein expression. In a full thickness abdominal wall defect model, the composite construct prevented hernia recurrence in Wistar rats over an 8-week period with de novo tissue and vascular network formation and the absence of adhesions to underlying abdominal viscera. As compared to acellular constructs, constructs containing hMSCs displayed greater integration strength (cell seeded: 0.92 ± 0.19 N/mm vs. acellular: 0.59 ± 0.25 N/mm, p=0.01), increased vascularization (cell seeded: 2.7-2.1/hpf vs. acellular: 1.7-2.1/hpf, p<0.03), and increased infiltration of macrophages (cell seeded: 2021-3630 µm(2)/hpf vs. acellular: 1570-2530 µm(2)/hpf, p<0.05). A decrease in the ratio of M1 macrophages to total macrophages was also observed in hMSC-populated samples. Laser micromachined collagen-alginate composites containing hMSCs can be used to bridge soft tissue defects with the capacity for enhanced tissue repair and integration. STATEMENT OF SIGNIFICANCE: Effective restoration of large soft tissue defects caused by trauma or treatment complications represents a critical challenge in the clinic. In this study, a novel composite construct was engineered and evaluated for stem cell delivery and tissue repair. Laser micromachining was used to fabricate patterned, microporous constructs designed with pores of defined size and distribution as a means to tune mechanical responses, accommodate and protect incorporated cells, and enhance tissue integration. The construct was embedded within an engineered alginate gel containing hMSCs. Upon repair of a full thickness abdominal wall defect in a rat model, the composite construct modulated host innate immunity towards a reparative phenotypic response, promoted neovascularization and associated matrix production, and increased the strength of tissue integration.


Assuntos
Fáscia/química , Regeneração Tecidual Guiada/instrumentação , Hérnia/terapia , Herniorrafia/instrumentação , Transplante de Células-Tronco Mesenquimais/instrumentação , Alicerces Teciduais , Alginatos/química , Animais , Materiais Biomiméticos/síntese química , Colágeno/química , Desenho de Equipamento , Análise de Falha de Equipamento , Fáscia/transplante , Feminino , Ácido Glucurônico/química , Regeneração Tecidual Guiada/métodos , Hérnia/patologia , Herniorrafia/métodos , Ácidos Hexurônicos/química , Humanos , Ratos , Ratos Wistar , Engenharia Tecidual/instrumentação , Resultado do Tratamento
8.
Proc Natl Acad Sci U S A ; 111(13): 4838-43, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639514

RESUMO

The mammalian gut is a dynamic community of symbiotic microbes that interact with the host to impact health, disease, and metabolism. We constructed engineered bacteria that survive in the mammalian gut and sense, remember, and report on their experiences. Based on previous genetic memory systems, we constructed a two-part system with a "trigger element" in which the lambda Cro gene is transcribed from a tetracycline-inducible promoter, and a "memory element" derived from the cI/Cro region of phage lambda. The memory element has an extremely stable cI state and a Cro state that is stable for many cell divisions. When Escherichia coli bearing the memory system are administered to mice treated with anhydrotetracycline, the recovered bacteria all have switched to the Cro state, whereas those administered to untreated mice remain in the cI state. The trigger and memory elements were transferred from E. coli K12 to a newly isolated murine E. coli strain; the stability and switching properties of the memory element were essentially identical in vitro and during passage through mice, but the engineered murine E. coli was more stably established in the mouse gut. This work lays a foundation for the use of synthetic genetic circuits as monitoring systems in complex, ill-defined environments, and may lead to the development of living diagnostics and therapeutics.


Assuntos
Escherichia coli/genética , Trato Gastrointestinal/microbiologia , Engenharia Genética , Mamíferos/microbiologia , Microbiota , Animais , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos , Microbiota/efeitos dos fármacos , Tetraciclinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...