Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosystems ; 92(1): 61-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18243517

RESUMO

Change of DNA sequence that fuels evolution is, to a certain extent, a deterministic process because mutagenesis does not occur in an absolutely random manner. So far, it has not been possible to decipher the rules that govern DNA sequence evolution due to the extreme complexity of the entire process. In our attempt to approach this issue we focus solely on the mechanisms of mutagenesis and deliberately disregard the role of natural selection. Hence, in this analysis, evolution refers to the accumulation of genetic alterations that originate from mutations and are transmitted through generations without being subjected to natural selection. We have developed a software tool that allows modelling of a DNA sequence as a one-dimensional cellular automaton (CA) with four states per cell which correspond to the four DNA bases, i.e. A, C, T and G. The four states are represented by numbers of the quaternary number system. Moreover, we have developed genetic algorithms (GAs) in order to determine the rules of CA evolution that simulate the DNA evolution process. Linear evolution rules were considered and square matrices were used to represent them. If DNA sequences of different evolution steps are available, our approach allows the determination of the underlying evolution rule(s). Conversely, once the evolution rules are deciphered, our tool may reconstruct the DNA sequence in any previous evolution step for which the exact sequence information was unknown. The developed tool may be used to test various parameters that could influence evolution. We describe a paradigm relying on the assumption that mutagenesis is governed by a near-neighbour-dependent mechanism. Based on the satisfactory performance of our system in the deliberately simplified example, we propose that our approach could offer a starting point for future attempts to understand the mechanisms that govern evolution. The developed software is open-source and has a user-friendly graphical input interface.


Assuntos
Algoritmos , DNA/genética , Mutação
2.
Biosystems ; 77(1-3): 11-23, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15527941

RESUMO

Recent studies of the quantum-mechanical processes in the DNA molecule have seriously challenged the principle that mutations occur randomly. The proton tunneling mechanism causes tautomeric transitions in base pairs resulting in mutations during DNA replication. The meticulous study of the quantum-mechanical phenomena in DNA may reveal that the process of mutagenesis is not completely random. We are still far away from a complete quantum-mechanical model of DNA sequence mutagenesis because of the complexity of the processes and the complex three-dimensional structure of the molecule. In this paper we have developed a quantum-mechanical description of DNA evolution and, following its outline, we have constructed a classical model for DNA evolution assuming that some aspects of the quantum-mechanical processes have influenced the determination of the genetic code. Conversely, our model assumes that the genetic code provides information about the quantum-mechanical mechanisms of mutagenesis, as the current code is the product of an evolutionary process that tries to minimize the spurious consequences of mutagenesis. Based on this model we develop an algorithm that can be used to study the accumulation of mutations in a DNA sequence. The algorithm has a user-friendly interface and the user can change key parameters in order to study relevant hypotheses.


Assuntos
Algoritmos , Análise Mutacional de DNA/métodos , DNA/genética , Código Genético/genética , Modelos Genéticos , Análise de Sequência de DNA/métodos , Simulação por Computador , DNA/química , Evolução Molecular , Modelos Estatísticos , Teoria Quântica , Software , Interface Usuário-Computador
3.
Comput Biol Med ; 33(5): 439-53, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12860467

RESUMO

Cellular automata are introduced as a model for DNA structure, function and evolution. DNA is modeled as a one-dimensional cellular automaton with four states per cell. These states are the four DNA bases A, C, T and G. The four states are represented by numbers of the quaternary number system. Linear evolution rules, represented by square matrices, are considered. Based on this model a simulator of DNA evolution is developed and simulation results are presented. This simulator has a user-friendly input interface and can be used for the study of DNA evolution.


Assuntos
Evolução Molecular , Modelos Moleculares , Análise de Sequência de DNA/métodos , Humanos , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...