Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 69(10): 4252-9, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19435898

RESUMO

Glioblastoma multiforme (GBM) is the most lethal of brain tumors and is highly resistant to ionizing radiation (IR) and chemotherapy. Here, we report on a molecular mechanism by which a key glioma-specific mutation, epidermal growth factor receptor variant III (EGFRvIII), confers radiation resistance. Using Ink4a/Arf-deficient primary mouse astrocytes, primary astrocytes immortalized by p53/Rb suppression, as well as human U87 glioma cells, we show that EGFRvIII expression enhances clonogenic survival following IR. This enhanced radioresistance is due to accelerated repair of DNA double-strand breaks (DSB), the most lethal lesion inflicted by IR. The EGFR inhibitor gefitinib (Iressa) and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 attenuate the rate of DSB repair. Importantly, expression of constitutively active, myristylated Akt-1 accelerates repair, implicating the PI3K/Akt-1 pathway in radioresistance. Most notably, EGFRvIII-expressing U87 glioma cells show elevated activation of a key DSB repair enzyme, DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Enhanced radioresistance is abrogated by the DNA-PKcs-specific inhibitor NU7026, and EGFRvIII fails to confer radioresistance in DNA-PKcs-deficient cells. In vivo, orthotopic U87-EGFRvIII-derived tumors display faster rates of DSB repair following whole-brain radiotherapy compared with U87-derived tumors. Consequently, EGFRvIII-expressing tumors are radioresistant and continue to grow following whole-brain radiotherapy with little effect on overall survival. These in vitro and in vivo data support our hypothesis that EGFRvIII expression promotes DNA-PKcs activation and DSB repair, perhaps as a consequence of hyperactivated PI3K/Akt-1 signaling. Taken together, our results raise the possibility that EGFR and/or DNA-PKcs inhibition concurrent with radiation may be an effective therapeutic strategy for radiosensitizing high-grade gliomas.


Assuntos
Dano ao DNA , Reparo do DNA , DNA de Neoplasias/genética , Receptores ErbB/genética , Glioblastoma/genética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Astrócitos/efeitos da radiação , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Terapia Combinada , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , DNA de Neoplasias/efeitos da radiação , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Camundongos , Radiação Ionizante , Análise de Sobrevida , Sobreviventes , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...