Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 891332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832792

RESUMO

With great sadness, the scientific community received the news of the loss of Beth Levine on 15 June 2020. Dr. Levine was a pioneer in the autophagy field and work in her lab led not only to a better understanding of the molecular mechanisms regulating the pathway, but also its implications in multiple physiological and pathological conditions, including its role in development, host defense, tumorigenesis, aging or metabolism. This review does not aim to provide a comprehensive view of autophagy, but rather an outline of some of the discoveries made by the group of Beth Levine, from the perspective of some of her own mentees, hoping to honor her legacy in science.

2.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166453, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35644338

RESUMO

Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. The FA proteins have functions in genome maintenance and in the cytoplasmic process of selective autophagy, beyond their canonical roles of repairing DNA interstrand cross-links. FA core complex proteins FANCC, FANCF, FANCL, FANCA, FANCD2, BRCA1 and BRCA2, which previously had no known direct functions outside the nucleus, have recently been implicated in mitophagy. Although mutations in FANCL account for only a very small number of cases in FA families, it plays a key role in the FA pathophysiology and might drive carcinogenesis. Here, we demonstrate that FANCL protein is present in mitochondria in the control and Oligomycin and Antimycin (OA)-treated cells and its ubiquitin ligase activity is not required for its localization to mitochondria. CRISPR/Cas9-mediated knockout of FANCL in HeLa cells overexpressing parkin results in increased sensitivity to mitochondrial stress and defective clearing of damaged mitochondria upon OA treatment. This defect was reversed by the reintroduction of either wild-type FANCL or FANCL(C307A), a mutant lacking ubiquitin ligase activity. To summarize, FANCL protects from mitochondrial stress and supports Parkin-mediated mitophagy in a ubiquitin ligase-independent manner.


Assuntos
Anemia de Fanconi , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação L da Anemia de Fanconi , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Células HeLa , Humanos , Mitofagia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
Cell Rep ; 18(4): 961-976, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122245

RESUMO

Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Fatores de Transcrição SOXB1/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gefitinibe , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Gradação de Tumores , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Plicamicina/farmacologia , Quinazolinas/uso terapêutico , Interferência de RNA , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição SOXB1/antagonistas & inibidores , Fatores de Transcrição SOXB1/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
4.
EMBO Rep ; 18(1): 48-60, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27827795

RESUMO

PEX13 is an integral membrane protein on the peroxisome that regulates peroxisomal matrix protein import during peroxisome biogenesis. Mutations in PEX13 and other peroxin proteins are associated with Zellweger syndrome spectrum (ZSS) disorders, a subtype of peroxisome biogenesis disorder characterized by prominent neurological, hepatic, and renal abnormalities leading to neonatal death. The lack of functional peroxisomes in ZSS patients is widely accepted as the underlying cause of disease; however, our understanding of disease pathogenesis is still incomplete. Here, we demonstrate that PEX13 is required for selective autophagy of Sindbis virus (virophagy) and of damaged mitochondria (mitophagy) and that disease-associated PEX13 mutants I326T and W313G are defective in mitophagy. The mitophagy function of PEX13 is shared with another peroxin family member PEX3, but not with two other peroxins, PEX14 and PEX19, which are required for general autophagy. Together, our results demonstrate that PEX13 is required for selective autophagy, and suggest that dysregulation of PEX13-mediated mitophagy may contribute to ZSS pathogenesis.


Assuntos
Autofagia , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitofagia , Peroxissomos/metabolismo , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno/genética , Sindbis virus/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo
5.
Cell ; 165(4): 867-81, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27133164

RESUMO

Fanconi anemia (FA) pathway genes are important tumor suppressors whose best-characterized function is repair of damaged nuclear DNA. Here, we describe an essential role for FA genes in two forms of selective autophagy. Genetic deletion of Fancc blocks the autophagic clearance of viruses (virophagy) and increases susceptibility to lethal viral encephalitis. Fanconi anemia complementation group C (FANCC) protein interacts with Parkin, is required in vitro and in vivo for clearance of damaged mitochondria, and decreases mitochondrial reactive oxygen species (ROS) production and inflammasome activation. The mitophagy function of FANCC is genetically distinct from its role in genomic DNA damage repair. Moreover, additional genes in the FA pathway, including FANCA, FANCF, FANCL, FANCD2, BRCA1, and BRCA2, are required for mitophagy. Thus, members of the FA pathway represent a previously undescribed class of selective autophagy genes that function in immunity and organellar homeostasis. These findings have implications for understanding the pathogenesis of FA and cancers associated with mutations in FA genes.


Assuntos
Proteína do Grupo de Complementação C da Anemia de Fanconi/metabolismo , Animais , Autofagia , Embrião de Mamíferos/citologia , Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Células HeLa , Herpesvirus Humano 1/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Sindbis virus/metabolismo
6.
Cell ; 159(7): 1603-14, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25525878

RESUMO

Glioblastomas and brain metastases are highly proliferative brain tumors with short survival times. Previously, using (13)C-NMR analysis of brain tumors resected from patients during infusion of (13)C-glucose, we demonstrated that there is robust oxidation of glucose in the citric acid cycle, yet glucose contributes less than 50% of the carbons to the acetyl-CoA pool. Here, we show that primary and metastatic mouse orthotopic brain tumors have the capacity to oxidize [1,2-(13)C]acetate and can do so while simultaneously oxidizing [1,6-(13)C]glucose. The tumors do not oxidize [U-(13)C]glutamine. In vivo oxidation of [1,2-(13)C]acetate was validated in brain tumor patients and was correlated with expression of acetyl-CoA synthetase enzyme 2, ACSS2. Together, the data demonstrate a strikingly common metabolic phenotype in diverse brain tumors that includes the ability to oxidize acetate in the citric acid cycle. This adaptation may be important for meeting the high biosynthetic and bioenergetic demands of malignant growth.


Assuntos
Acetato-CoA Ligase/metabolismo , Acetatos/metabolismo , Neoplasias Encefálicas/metabolismo , Ciclo do Ácido Cítrico , Glioblastoma/metabolismo , Acetato-CoA Ligase/genética , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Modelos Animais de Doenças , Glioblastoma/patologia , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Metástase Neoplásica/patologia
7.
Mol Plant Microbe Interact ; 19(12): 1394-405, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17153924

RESUMO

Transient expression studies using Nicotiana benthamiana protoplasts and plants have identified sequences important for transcription of complementary sense RNAs derived from Tomato golden mosaic virus (TGMV) DNA component A that direct expression of AL2 and AL3. Transcription of two complementary sense RNAs, initiating at nucleotides 1,935 (AL1935) and 1,629 (AL1629), is directed by unique sequences located upstream of each transcription initiation site. One element is located between 28 and 124 nucleotides (nt) upstream of the AL1935 transcription start site, which differs from a second element located 150 nt downstream, between 129 and 184 nt upstream of the AL1629 transcription start site. Transcription initiation at nucleotide 1,935 is lower than that at nucleotide 1,629 as determined by run-on transcription assays, and the resulting transcript is only capable of expressing AL3. The transcript initiating at nucleotide 1,629 is capable of directing expression of both AL2 and AL3, although expression of AL3 is up to fourfold greater than that for AL2. Nuclear factors purified from tobacco suspension cells bind to sequences upstream of both AL1935 and AL1629, correlating with the ability of these sequences to direct gene expression. Thus, in tobacco, regulatory sequences direct transcription of two unique TGMV messenger RNAs that differentially express AL2 and AL3.


Assuntos
Begomovirus/genética , DNA Viral/química , Regulação Viral da Expressão Gênica , Elementos Reguladores de Transcrição , Proteínas Virais/genética , Begomovirus/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Genes Virais , Glucuronidase/análise , Regiões Promotoras Genéticas , Protoplastos/virologia , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Nicotiana/virologia , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...