Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 150: 109645, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777254

RESUMO

Metallothioneins (MTs) are cysteine-rich metal-binding proteins whose expression is induced by exposure to essential and non-essential metals, making them potential biological markers for assessing metal pollution in various biomonitoring programs. However, the functional properties of these proteins are yet to be comprehensively characterized in most marine invertebrates. In this study, we identified and characterized an MT homolog from the disk abalone (Haliotis discus discus), referred to as disk abalone MT (AbMT). AbMT exhibited the same primary structural features as MTs from other mollusks containing two ß-domains (ß2ß1-form). AbMT protein demonstrated metal-binding and detoxification abilities against Zn, Cu, and Cd, as evidenced by Escherichia coli growth kinetics, metal tolerance analysis, and UV absorption spectrum. Transcriptional analysis revealed that AbMT was ubiquitously expressed in all analyzed tissues and upregulated in gill tissue following challenge with Vibrio parahaemolyticus, Listeria monocytogenes, and viral hemorrhagic septicemia virus (VHSV). Additionally, overexpression of AbMT suppressed LPS-induced NO production in RAW264.7 macrophages, protected cells against H2O2-induced oxidative stress, and promoted macrophage polarization toward the M1 phase. Conclusively, these findings suggest an important role for AbMT in environmental stress protection and immune regulation in disk abalone.


Assuntos
Gastrópodes , Imunidade Inata , Metalotioneína , Novirhabdovirus , Estresse Oxidativo , Vibrio parahaemolyticus , Animais , Metalotioneína/genética , Metalotioneína/imunologia , Gastrópodes/imunologia , Gastrópodes/genética , Gastrópodes/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Vibrio parahaemolyticus/fisiologia , Imunidade Inata/genética , Novirhabdovirus/fisiologia , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Filogenia , Alinhamento de Sequência/veterinária , Listeria monocytogenes/fisiologia , Listeria monocytogenes/imunologia , Camundongos , Perfilação da Expressão Gênica/veterinária , Células RAW 264.7 , Metais Pesados/toxicidade , Poluentes Químicos da Água
2.
Fish Shellfish Immunol ; 146: 109434, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331055

RESUMO

Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a member of the TRAF family of adaptor proteins involved in the signal transduction pathways of both TNF receptor and interleukin-1 receptor/Toll-like receptor superfamilies. In this study, red-spotted grouper (Epinephelus akaara) TRAF6 (EaTraf6) was identified and characterized. The open reading frame of EaTraf6, 1713 bp in length, encodes a putative protein of 570 amino acids and has a predicted molecular weight and theoretical isoelectric point of 64.11 kDa and 6.07, respectively. EaTraf6 protein contains an N-terminal RING-type zinc finger domain, two TRAF-type zinc finger domains, a coiled-coil region (zf-TRAF), and a conserved C-terminal meprin and TRAF homology (MATH) domain. EaTraf6 shared the highest amino acid sequence identity with its ortholog from Epinephelus coioides, and phylogenetic analysis showed all fish TRAF6s clustered together and apart from other species. qRT-PCR results revealed that EaTraf6 was ubiquitously expressed in all examined tissues, with the highest level detected in the blood. In the immune challenge, EaTraf6 exhibited modulated mRNA expression levels in the blood and spleen. The subcellular localization analysis revealed that the EaTraf6 protein was predominantly present in the cytoplasm; however, it could translocate into the nucleus following poly (I:C) stimulation. The antiviral function of EaTraf6 was confirmed by analyzing the expression of host antiviral genes and viral genomic RNA during viral hemorrhagic septicemia virus infection. Additionally, luciferase reporter assay results indicated that EaTraf6 is involved in the activation of the NF-κB signaling pathway upon poly (I:C) stimulation. Finally, the effect of EaTraf6 on cytokine gene expression and its role in regulating macrophage M1 polarization were demonstrated. Collectively, these findings suggest that EaTraf6 is a crucial immune-related gene that significantly contributes to antiviral functions and regulation of NF-κB activity in the red-spotted grouper.


Assuntos
Bass , Doenças dos Peixes , Animais , Fator 6 Associado a Receptor de TNF , NF-kappa B/genética , NF-kappa B/metabolismo , Filogenia , Transdução de Sinais , Proteínas de Peixes/química , Imunidade Inata/genética
3.
Fish Shellfish Immunol ; 143: 109172, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858785

RESUMO

Galectin 9 (Gal9) is a tandem repeat type ß-galactoside-binding galectin that mediates various cellular biochemical and immunological functions. Many studies have investigated the functional properties of Gal9 in mammals; however, knowledge of fish Gal9 is limited to antibacterial studies. In this context, our aim was to clone Gal9 from Planiliza haematocheilus (PhGal9) and investigate its structural and functional characteristics. We discovered the PhGal9 open reading frame, which was 969 base pairs long and encoded a 322 amino acid protein. PhGal9 had a projected molecular weight of 35.385 kDa but no signal peptide sequence. PhGal9 mRNA was ubiquitously produced in all investigated tissues but was predominant in the intestine, spleen, and brain. Its mRNA expression was increased in response to stimulation by Poly(I:C), LPS, and L. garvieae. The rPhGal9 exhibited a dose-dependent agglutination potential toward gram-positive and gram-negative bacteria at a minimum concentration of 50 µg/mL. Overexpression of PhGal9 promoted M2-like phenotype changes in mouse macrophages, and RT-qPCR analysis of M1 and M2 marker genes confirmed M2 polarization with upregulation of M2 marker genes. In the antiviral assay, the expression levels of Viral Hemorrhagic Septicemia Virus (VHSV) glycoproteins, phosphoproteins, nucleoproteins, non-virion proteins, matrix proteins, and RNA polymerase were significantly reduced in PhGal9-overexpressed cells. Furthermore, the mRNA expression of autophagic genes (sqstm1, tax1bp1b, rnf13, lc3, and atg5) and antiviral genes (viperin) were upregulated in PhGal9 overexpressed cells. For the first time in teleosts, our study demonstrated that PhGal9 promotes M2 macrophage polarization by upregulating M2-associated genes (egr2 and cmyc) and suppressing M1-associated genes (iNOS and IL-6). Furthermore, our results show that exogenous and endogenous PhGal9 prevented VHSV attachment and replication by neutralizing virion and autophagy, respectively. Gal9 may be a potent modulator of the antimicrobial immune response in teleost fish.


Assuntos
Antivirais , Autofagia , Galectinas , Smegmamorpha , Replicação Viral , Animais , Camundongos , Antibacterianos/metabolismo , Anti-Inflamatórios/metabolismo , Antivirais/metabolismo , Peixes/genética , Galectinas/genética , Galectinas/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Macrófagos , RNA Mensageiro/metabolismo , Smegmamorpha/genética
4.
Dev Comp Immunol ; 130: 104356, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065138

RESUMO

Interferon regulatory factor 4 (IRF4) is a crucial member of IRF family, which acts as an imperative transcription factor in the development and maturation of multiple lineages of blood cells and also plays a pivotal role in host defense against microbial infections. In the present study, we aimed to investigate the detailed structural and functional aspects of a redlip mullet IRF4 homolog (LhIRF4). The LhIRF4 open reading frame consists of 1347 base pairs encoding 449 amino acids, with the DNA-binding domain sharing significant homology with that of other vertebrate IRF4 homologs. The highest transcription levels of LhIRF4 were observed in the mullet intestine and spleen under normal physiological conditions. Furthermore, a time-dependent upregulation of LhIRF4 transcription was observed in the spleen and head kidney tissues upon pathogenic challenges. When overexpressed in mullet cells, LhIRF4 was localized to the nucleus and significantly stimulated the transcription of several host antiviral genes. Moreover, the overexpression of LhIRF4 strongly inhibited the replication of viral hemorrhagic septicemia virus (VHSV) in vitro. The function of LhIRF4 in regulation of macrophage M2 polarization has also been evidently demonstrated in RAW 264.7 cells. Taken together, our findings indicate the profound role of LhIRF4 in modulating immune responses against microbial infections in redlip mullet.


Assuntos
Doenças dos Peixes , Smegmamorpha , Animais , Antivirais , Proteínas de Peixes/metabolismo , Peixes/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imunidade Inata/genética , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Filogenia , Células RAW 264.7
5.
Dev Comp Immunol ; 123: 104165, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34116115

RESUMO

Copper-zinc superoxide dismutase (CuZnSOD) is a nuclear-encoded metalloenzyme responsible for scavenging harmful reactive oxygen species (ROS). In this study, the CuZnSOD homolog from redlip mullet (Liza haematochelia) (MuCuZnSOD) was structurally and functionally characterized to evaluate its antioxidant capacity, antibacterial properties, and protective level in various pathogenic stress conditions. Structural characteristics of MuCuZnSOD were evaluated using different bioinformatics tools. Pairwise sequence comparison and evolutionary tree structure revealed that the MuCuZnSOD sequence was closely related to the CuZnSOD sequence of Oplegnathus fasciatus with a 94.2% sequence identity. Sequence alignment analysis indicated that the CuZnSOD domain was well conserved. The highest transcriptional expression of MuCuZnSOD was identified in the blood. Immune challenge with lipopolysaccharide (LPS), Lactococcus garvieae, and polyinosinic-polycytidylic acid (poly I:C) exhibited an increased MuCuZnSOD mRNA expression in the blood and liver. Transfected green fluorescent protein-fused MuCuZnSOD was localized in the cytoplasm. Recombinant MuCuZnSOD (rMuCuZnSOD) was overexpressed in a bacterial system. The rMuCuZnSOD possessed significant antioxidant properties as determined by conventional xanthine oxidase assay. The optimum pH and temperature of rMuCuZnSOD were found to be pH 9 and 25 °C, respectively. rMuCuZnSOD enzyme activity increased in a concentration-dependent manner. Treatment with potassium cyanide highly inhibited the rMuCuZnSOD activity. rMuCuZnSOD possessed a significant peroxidation activity in the presence of HCO3- ions as demonstrated by the increased viability in cells treated with the enzyme in the presence of hydrogen peroxide. Antibacterial assays showed that rMuCuZnSOD had significant growth-inhibitory effects on both gram-positive and gram-negative bacteria. Collectively, our findings demonstrate that MuCuZnSOD is an essential antioxidant protein, which regulates the host defense mechanisms and innate immunity under oxidative stress.


Assuntos
Antibacterianos/metabolismo , Antioxidantes/metabolismo , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Superóxido Dismutase-1/metabolismo , Animais , Peixes/imunologia , Concentração de Íons de Hidrogênio , Imunidade Inata , Peroxidação de Lipídeos , Estresse Oxidativo , Conformação Proteica , Temperatura
6.
Comp Biochem Physiol B Biochem Mol Biol ; 243-244: 110432, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32119919

RESUMO

Glutaredoxins are a group of heat stable oxidoreductases ubiquitously found in prokaryotes and eukaryotes. They are widely known for GSH (glutathione)-dependent protein disulfide reduction and cellular redox homeostasis. This study was performed to identify and characterize rockfish (Sebastes schlegelii) glutaredoxin 1 (SsGrx1) at molecular, transcriptional, and functional levels. The coding sequence of SsGrx1 was 318 bp in length and encoded a protein containing 106 amino acids. The molecular weight and theoretical isoelectric point of the putative SsGrx1 protein were 11.6 kDa and 6.71 kDa, respectively. The amino acid sequence of SsGrx1 comprised a CPYC redox active motif surrounded by several conserved GSH binding sites. The modeled protein structure was found to consist of five α-helices and four ß-sheets, similar to human Grx1. SsGrx1 showed a tissue specific expression in all the tissues tested, with the highest expression in the kidney. Immune stimulation by lipopolysaccharides (LPS), polyinosinic:polycytidylic acid (polyI:C), and Streptococcus iniae (S. iniae) could significantly modulate the SsGrx1 expression pattern in the blood and gills. Analysis of its subcellular localization disclosed that SsGrx1 was prominently localized in the cytosol. Recombinant SsGrx1 (rSsGrx1) exhibited significant activity in insulin disulfide reduction assay and HED (ß-Hydroxyethyl Disulfide) assay. Furthermore, transient overexpression of SsGrx1 in FHM (fathead minnow) cells significantly enhanced cell survival upon H2O2-induced apoptosis. Collectively, our findings strongly suggest that SsGrx1 plays a crucial role in providing rockfish immune protection against pathogens and oxidative stress.


Assuntos
Bass/imunologia , Bass/metabolismo , Glutarredoxinas/metabolismo , Imunidade Inata , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Apoptose/genética , Apoptose/imunologia , Bass/sangue , Bass/genética , Sítios de Ligação/genética , Células Cultivadas , Citosol/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Glutarredoxinas/química , Glutarredoxinas/genética , Lipopolissacarídeos/farmacologia , Especificidade de Órgãos , Estresse Oxidativo , Filogenia , Poli I-C/farmacologia , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Streptococcus iniae/imunologia , Streptococcus iniae/patogenicidade , Transcrição Gênica
7.
Fish Shellfish Immunol ; 96: 279-289, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31783148

RESUMO

The interferon-induced GTP-binding protein Mx is responsible for a specific antiviral state against a broad spectrum of viral infections that are induced by type-I interferons (IFN α/ß) in different vertebrates. In this study, the Mx gene was isolated from the constructed mullet cDNA database. Structural features of mullet Mx (MuMx) were analyzed using different in-silico tools. The pairwise comparison revealed that the MuMx sequence was related to Stegastes partitus Mx with an 83.7% sequence identity, whereas MuMx was clustered into the teleost category in the phylogentic analysis. Sequence alignment showed that the dynamin-type guanine nucleotide-binding domain (G_DYNAMIN_2), central interactive domain (CID), and GTPase effector domain (GED) were conserved among Mx counterparts. The transcriptional expression of MuMx was the highest in blood cells from unchallenged fish. The temporal mRNA profile showed that MuMx expression was significantly elevated in all tissues, including blood, spleen, head kidney, liver, and gills after the injection of polyinosinic-polycytidylic acid (poly I:C) at many time points. Moreover, MuMx expression increased slightly, in the blood, spleen, and head kidney at a few time points after the injection of lipopolysaccharide (LPS) and Lactococcus garvieae (L. garvieae). Results of the subcellular localization analysis confirmed that the MuMx protein was highly expressed in the cytoplasm. The analysis of the gene expression of the viral hemorrhagic septicemia virus (VHSV) under conditions of MuMx overexpression confirmed the significant inhibition of viral transcripts. The cell viability (MTT) assay and VHSV titer quantification with the presence of MuMx indicated a significant reduction in virus replication. Collectively, these findings suggest that Mx is a specific immune-related gene that elicits crucial antiviral functions against viral antigens in the mullet fish.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/imunologia , Smegmamorpha/genética , Smegmamorpha/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Expressão Gênica , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/veterinária , Lactococcus/fisiologia , Lipopolissacarídeos/farmacologia , Proteínas de Resistência a Myxovirus/química , Novirhabdovirus/fisiologia , Filogenia , Poli I-C/farmacologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Alinhamento de Sequência/veterinária
8.
Fish Shellfish Immunol ; 84: 73-82, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30266606

RESUMO

Manganese superoxide dismutase (MnSOD) is a nuclear-encoded antioxidant metalloenzyme. The main function of this enzyme is to dismutase the toxic superoxide anion (O2-) into less toxic hydrogen peroxide (H2O2) and oxygen (O2). Structural analysis of mullet MnSOD (MuMnSOD) was performed using different bioinformatics tools. Pairwise alignment revealed that the protein sequence matched to that derived from Larimichthys crocea with a 95.2% sequence identity. Phylogenetic tree analysis showed that the MuMnSOD was included in the category of teleosts. Multiple sequence alignment showed that a SOD Fe-N domain, SOD Fe-C domain, and Mn/Fe SOD signature were highly conserved among the other examined MnSOD orthologs. Quantitative real-time PCR showed that the highest MuMnSOD mRNA expression level was in blood cells. The highest expression level of MuMnSOD was observed in response to treatment with both Lactococcus garvieae and lipopolysaccharide (LPS) at 6 h post treatment in the head kidney and blood. Potential ROS-scavenging ability of the purified recombinant protein (rMuMnSOD) was examined by the xanthine oxidase assay (XOD assay). The optimum temperature and pH for XOD activity were found to be 25 °C and pH 7, respectively. Relative XOD activity was significantly increased with the dose of rMuMnSOD, revealing its dose dependency. Activity of rMuMnSOD was inhibited by potassium cyanide (KCN) and N-N'-diethyl-dithiocarbamate (DDC). Moreover, expression of MuMnSOD resulted in considerable growth retardation of both gram-positive and gram-negative bacteria. Results of the current study suggest that MuMnSOD acts as an antioxidant enzyme and participates in the immune response in mullet.


Assuntos
Proteínas de Peixes/fisiologia , Smegmamorpha/fisiologia , Superóxido Dismutase/fisiologia , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/veterinária , Escherichia coli , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Lactococcus , Lipopolissacarídeos , Micrococcus luteus , Estrutura Molecular , Smegmamorpha/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...