Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 11(2): 1214-1221, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28121129

RESUMO

While slow release of chemicals has been widely applied for drug delivery, little work has been done on using this general nanotechnology-based principle for delivering nutrients to crops. In developing countries, the cost of fertilizers can be significant and is often the limiting factor for food supply. Thus, it is important to develop technologies that minimize the cost of fertilizers through efficient and targeted delivery. Urea is a rich source of nitrogen and therefore a commonly used fertilizer. We focus our work on the synthesis of environmentally benign nanoparticles carrying urea as the crop nutrient that can be released in a programmed manner for use as a nanofertilizer. In this study, the high solubility of urea molecules has been reduced by incorporating it into a matrix of hydroxyapatite nanoparticles. Hydroxyapatite nanoparticles have been selected due to their excellent biocompatibility while acting as a rich phosphorus source. In addition, the high surface area offered by nanoparticles allows binding of a large amount of urea molecules. The method reported here is simple and scalable, allowing the synthesis of a urea-modified hydroxyapatite nanohybrid as fertilizer having a ratio of urea to hydroxyapatite of 6:1 by weight. Specifically, a nanohybrid suspension was synthesized by in situ coating of hydroxyapatite with urea at the nanoscale. In addition to the stabilization imparted due to the high surface area to volume ratio of the nanoparticles, supplementary stabilization leading to high loading of urea was provided by flash drying the suspension to obtain a solid nanohybrid. This nanohybrid with a nitrogen weight of 40% provides a platform for its slow release. Its potential application in agriculture to maintain yield and reduce the amount of urea used is demonstrated.

2.
Curr Pharm Des ; 21(31): 4529-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26486140

RESUMO

This review is based on carriers of natural origin such as polysaccharides, proteins, and cell derived entities which have been used for delivery of siRNA. To realize the therapeutic potential of a delivery system, the role of the carrier is of utmost importance. Historical aspects of viral vectors, the first carriers of genes are briefly outlined. Chitosan, one of the extensively experimented carriers, alginates and other polysaccharides have shown success in siRNA delivery. Peptides of natural origin and mimics thereof have emerged as another versatile carrier. Exosomes and mini cells of cellular origin are the newest entrants to the area of siRNA delivery and probably the closest one can get to a natural carrier. In many of the carriers, modifications have provided better efficiency in delivery. The salient features of the carriers and their advantages and disadvantages are also reviewed.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , RNA Interferente Pequeno/administração & dosagem , Animais , Quitosana/química , Exossomos/química , Vetores Genéticos/química , Humanos , Peptídeos/química , Polissacarídeos/química , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...