Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 247: 120824, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956523

RESUMO

This study proposes the Sulphate reduction, mixed sulphide- and thiosulphate-driven Autotrophic denitrification, Nitrification, and Anammox integrated (SANIA) process for sustainable treatment of mainstream wastewater after organics capture. Three moving-bed biofilm reactors (MBBRs) were applied for developing sulphate reduction (SR), mixed sulphide- and thiosulphate-driven partial denitrification and Anammox (MSPDA), and NItrification (N), respectively. Typical mainstream wastewater after organics capture (e.g., chemically enhanced primary treatment, CEPT) was synthesized with chemical oxygen demand (COD) of 110 mg/L, sulphate of 50 mg S/L, ammonium of 30 mgN/L. The feasibility of SANIA was investigated with mimic nitrifying effluent supplied in MSPDA-MBBR (Period I), followed by the examination of the applicability of SANIA process with N-MBBR integrated (Period II), under moderate temperatures (25-27 â„ƒ). In Period I, SANIA process was established with both SR- and MSPDA-MBBR continuously operated for over 300 days (no Anammox biomass inoculation). Specifically, in MSPDA-MBBR, high rates of denitratation (2.7 gN/(m2·d)) and Anammox (2.8 gN/(m2·d)) were achieved with Anammox contributing to 81 % of the total inorganic nitrogen removal. In Period II, the integrated SANIA system was continuously operated for over 130 days, achieving up to 90 % of COD, 93 % of ammonium, and 61 % of total inorganic nitrogen (TIN) removal, with effluent concentrations lower than 10 mg COD/L, 3 mg NH4+-N/L, and 13 mg TIN-N/L. The implementation of SANIA can ultimately reduce 75 % and 40 % of organics and aeration energy for biological nitrogen removal. Considering the combination of SANIA with CEPT for carbon capture and sludge digestion/incineration for energy recovery, the new integrated wastewater technology can be a promising strategy for sustainable wastewater treatment.


Assuntos
Compostos de Amônio , Purificação da Água , Nitrificação , Águas Residuárias , Desnitrificação , Tiossulfatos , Biofilmes , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Oxirredução , Esgotos , Nitrogênio
2.
Bioresour Technol ; 382: 129212, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37230332

RESUMO

Combining multiple bioprocesses in a single membrane-aerated biofilm reactor (MABR) unit for wastewater treatment is an emerging research focus. This study investigated the feasibility of coupling thiosulfate-driven denitrification (TDD) with partial nitrification and anammox (PNA) in a MABR for the treatment of ammonium-containing wastewater. The integrated bioprocess was tested over a continuous operation period (>130 d) in two MABRs: one with a polyvinylidene fluoride membrane (MABR-1), and the other with micro-porous aeration tubes covered with non-wovenpolyester fabrics (MABR-2). After start-up, the MABR-1 and MABR-2 based on the TDD-PNA process achieved satisfactory total nitrogen removal efficiencies of 63% and 76%, with maximum oxygen utilisation efficiencies of up to 66% and 80% and nitrogen removal fluxes of 1.3 and 4.7 gN/(m2·d), respectively. Predictions from the AQUASIM-model verified the integrated bioprocess. These lab scale findings confirmed the applicability of MABR technology for simultaneous sulfur and nitrogen removal, promising for pilot-scale application.


Assuntos
Desnitrificação , Nitrificação , Tiossulfatos , Nitrogênio , Carbono , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Biofilmes , Oxirredução
3.
Bioresour Technol ; 345: 126554, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34906703

RESUMO

The membrane aerated biofilm reactor (MABR) is a novel bioreactor technology, facilitating single-stage autotrophic nitrogen removal. Two laboratory-scale MABRs equipped with non-woven fabrics were operated simultaneously without and with a self-forming dynamic membrane (SFDM) filtration module. After 87 days of operation (system start-up), the reactor incorporated with SFDM filtration showed better performance in terms of total nitrogen removal (>80%) and effluent suspended solid (less than1 mg/L) than the MABR in the up flow anaerobic sludge blanket (UASB) configuration (i.e., without SFDM). The incorporation of SFDM has the ability to retain more slow growing biomass (anammox) inside the reactor. Microbial characterization by 16S rRNA-based amplicon sequencing shows that the abundance and composition of microbial communities in two MABR systems were different, i.e., the genusRhodanobacterwas abundant in UASB-MABR, while Calorithrixwas dominant in SFDM-MABR. PCA-based statistical analysis demonstrated a positive association between reactor performance, membrane characteristics and microbial communities.


Assuntos
Desnitrificação , Nitrogênio , Oxidação Anaeróbia da Amônia , Biofilmes , Reatores Biológicos , RNA Ribossômico 16S/genética , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...