Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31579431

RESUMO

High-resolution, laboratory, absorption spectra of the a 1 Δ g ← X 3 ∑ g - oxygen (O2) band measured using cavity ring-down spectroscopy were fitted using the Voigt and speed-dependent Voigt line shapes. We found that the speed-dependent Voigt line shape was better able to model the measured absorption coefficients than the Voigt line shape. We used these line shape models to calculate absorption coefficients to retrieve atmospheric total columns abundances of O2 from ground-based spectra from four Fourier transform spectrometers that are apart of the Total Carbon Column Observing Network (TCCON) Lower O2 total columns were retrieved with the speed-dependent Voigt line shape, and the difference between the total columns retrieved using the Voigt and speed-dependent Voigt line shapes increased as a function of solar zenith angle. Previous work has shown that carbon dioxide (CO2) total columns are better retrieved using a speed-dependent Voigt line shape with line mixing. The column-averaged dry-air mole fraction of CO2 (XCO2) was calculated using the ratio between the columns of CO2 and O2 retrieved (from the same spectra) with both line shapes from measurements made over a one-year period at the four sites. The inclusion of speed dependence in the O2 retrievals significantly reduces the airmass dependence of XCO2 and the bias between the TCCON measurements and calibrated integrated aircraft profile measurements was reduced from 1% to 0.4%. These results suggest that speed dependence should be included in the forward model when fitting near-infrared CO2 and O2 spectra to improve the accuracy of XCO2 measurements.

2.
J Chem Phys ; 141(17): 174301, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25381508

RESUMO

Frequency-stabilized cavity ring-down spectroscopy was used to study CO2 lineshapes in the (20013) ← (00001) band centered near 2.06 µm. Two rovibrational transitions were chosen for this study to measure non-Voigt collisional effects for air-broadened lines over the pressure range of 7 kPa-28 kPa. Lineshape analysis for both lines revealed evidence of simultaneous Dicke (collisional) narrowing and speed-dependent effects that would introduce biases exceeding 2% in the retrieved air-broadening parameters if not incorporated in the modeling of CO2 lineshapes. Additionally, correlations between velocity- and phase/state changing collisions greatly reduced the observed Dicke narrowing effect. As a result, it was concluded that the most appropriate line profile for modeling CO2 lineshapes near 2.06 µm was the correlated speed-dependent Nelkin-Ghatak profile, which includes all of the physical effects mentioned above and leads to a consistent set of line shape parameters that are linear with gas pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...