Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e16646, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274723

RESUMO

Nowadays augmented reality, 3D Image, mixed reality and see-through applications are very attractive technologies due to their great potential. Holographic optical elements can provide interesting solutions for injection and extraction of the image in the waveguides that are part of the see-through devices. We have developed a coupled waveguide system based on slanted transmission gratings recorded in manufactured photopolymers. In this work we optimize our schedule to a commercial photopolymer for this high demanded application. We demonstrate that high diffraction efficiencies can be obtained if we optimize the recording geometry, recording intensity and recording time for this material. In addition, we study the effects of shrinkage in our holographic system. In general shrinkage is an important drawback for holographic applications, nevertheless we demonstrate how shrinkage can help these systems open new possibilities. Lastly, we show how to significantly improve the quality of the guided image.

2.
Materials (Basel) ; 14(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947491

RESUMO

A numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary conditions are implemented, permitting the simulation of a wide range of periodic optical media, i.e., gratings, or thin-film filters. Furthermore, the complete tensorial derivation for the permittivity also allows simulating anisotropic periodic media. Numerical results demonstrate that PITD is reliable and even considering anisotropic media can be competitive compared to traditional FDTD solutions. Furthermore, the maximum allowable time-step size has been demonstrated to be much larger than that of the CFL limit of the FDTD method, being a valuable tool in cases in which the steady-state requires a large number of time-steps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...