Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 187(4): 1023-30, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21321134

RESUMO

The genus Drosophila has been the subject of intense comparative phylogenomics characterization to provide insights into genome evolution under diverse biological and ecological contexts and to functionally annotate the Drosophila melanogaster genome, a model system for animal and insect genetics. Recent sequencing of 11 additional Drosophila species from various divergence points of the genus is a first step in this direction. However, to fully reap the benefits of this resource, the Drosophila community is faced with two critical needs: i.e., the expansion of genomic resources from a much broader range of phylogenetic diversity and the development of additional resources to aid in finishing the existing draft genomes. To address these needs, we report the first synthesis of a comprehensive set of bacterial artificial chromosome (BAC) resources for 19 Drosophila species from all three subgenera. Ten libraries were derived from the exact source used to generate 10 of the 12 draft genomes, while the rest were generated from a strategically selected set of species on the basis of salient ecological and life history features and their phylogenetic positions. The majority of the new species have at least one sequenced reference genome for immediate comparative benefit. This 19-BAC library set was rigorously characterized and shown to have large insert sizes (125-168 kb), low nonrecombinant clone content (0.3-5.3%), and deep coverage (9.1-42.9×). Further, we demonstrated the utility of this BAC resource for generating physical maps of targeted loci, refining draft sequence assemblies and identifying potential genomic rearrangements across the phylogeny.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Cromossomos de Insetos/genética , Drosophila melanogaster/genética , Genoma de Inseto , Biblioteca Genômica , Animais , Evolução Biológica , Mapeamento Cromossômico , Genes de Insetos , Filogenia , Análise de Sequência de DNA
2.
Proc Natl Acad Sci U S A ; 106(22): 9063-8, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19451630

RESUMO

Eukaryotes engage in a multitude of beneficial and deleterious interactions with bacteria. Hamiltonella defensa, an endosymbiont of aphids and other sap-feeding insects, protects its aphid host from attack by parasitoid wasps. Thus H. defensa is only conditionally beneficial to hosts, unlike ancient nutritional symbionts, such as Buchnera, that are obligate. Similar to pathogenic bacteria, H. defensa is able to invade naive hosts and circumvent host immune responses. We have sequenced the genome of H. defensa to identify possible mechanisms that underlie its persistence in healthy aphids and protection from parasitoids. The 2.1-Mb genome has undergone significant reduction in size relative to its closest free-living relatives, which include Yersinia and Serratia species (4.6-5.4 Mb). Auxotrophic for 8 of the 10 essential amino acids, H. defensa is reliant upon the essential amino acids produced by Buchnera. Despite these losses, the H. defensa genome retains more genes and pathways for a variety of cell structures and processes than do obligate symbionts, such as Buchnera. Furthermore, putative pathogenicity loci, encoding type-3 secretion systems, and toxin homologs, which are absent in obligate symbionts, are abundant in the H. defensa genome, as are regulatory genes that likely control the timing of their expression. The genome is also littered with mobile DNA, including phage-derived genes, plasmids, and insertion-sequence elements, highlighting its dynamic nature and the continued role horizontal gene transfer plays in shaping it.


Assuntos
Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Evolução Molecular , Genoma Bacteriano , Sequência de Bases , Enterobacteriaceae/patogenicidade , Genômica , Dados de Sequência Molecular , Filogenia , Proteoma/genética , Simbiose
3.
BMC Genomics ; 9: 621, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19099592

RESUMO

BACKGROUND: Many plant genomes are resistant to whole-genome assembly due to an abundance of repetitive sequence, leading to the development of gene-rich sequencing techniques. Two such techniques are hypomethylated partial restriction (HMPR) and methylation spanning linker libraries (MSLL). These libraries differ from other gene-rich datasets in having larger insert sizes, and the MSLL clones are designed to provide reads localized to "epigenetic boundaries" where methylation begins or ends. RESULTS: A large-scale study in maize generated 40,299 HMPR sequences and 80,723 MSLL sequences, including MSLL clones exceeding 100 kb. The paired end reads of MSLL and HMPR clones were shown to be effective in linking existing gene-rich sequences into scaffolds. In addition, it was shown that the MSLL clones can be used for anchoring these scaffolds to a BAC-based physical map. The MSLL end reads effectively identified epigenetic boundaries, as indicated by their preferential alignment to regions upstream and downstream from annotated genes. The ability to precisely map long stretches of fully methylated DNA sequence is a unique outcome of MSLL analysis, and was also shown to provide evidence for errors in gene identification. MSLL clones were observed to be significantly more repeat-rich in their interiors than in their end reads, confirming the correlation between methylation and retroelement content. Both MSLL and HMPR reads were found to be substantially gene-enriched, with the SalI MSLL libraries being the most highly enriched (31% align to an EST contig), while the HMPR clones exhibited exceptional depletion of repetitive DNA (to approximately 11%). These two techniques were compared with other gene-enrichment methods, and shown to be complementary. CONCLUSION: MSLL technology provides an unparalleled approach for mapping the epigenetic status of repetitive blocks and for identifying sequences mis-identified as genes. Although the types and natures of epigenetic boundaries are barely understood at this time, MSLL technology flags both approximate boundaries and methylated genes that deserve additional investigation. MSLL and HMPR sequences provide a valuable resource for maize genome annotation, and are a uniquely valuable complement to any plant genome sequencing project. In order to make these results fully accessible to the community, a web display was developed that shows the alignment of MSLL, HMPR, and other gene-rich sequences to the BACs; this display is continually updated with the latest ESTs and BAC sequences.


Assuntos
Mapeamento Cromossômico/métodos , Metilação de DNA , Genoma de Planta , Zea mays/genética , Cromossomos Artificiais Bacterianos , DNA de Plantas/genética , Epigênese Genética , Biblioteca Gênica , Genômica/métodos , Alinhamento de Sequência , Análise de Sequência de DNA/métodos
4.
BMC Genomics ; 7: 106, 2006 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-16672057

RESUMO

BACKGROUND: Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. AIMS: In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC) library for the nurse shark, Ginglymostoma cirratum. RESULTS: The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 x 1010 bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6-28 primary positive clones per probe of which 50-90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. CONCLUSION: We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome.


Assuntos
Cromossomos Artificiais Bacterianos , Biblioteca Gênica , Genômica/métodos , Tubarões/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Biologia Computacional/métodos , Genoma , Modelos Genéticos , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
5.
Genomics ; 87(1): 181-90, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16321505

RESUMO

The zebra finch (Taeniopygia guttata) is an important model organism for studying behavior, neuroscience, avian biology, and evolution. To support the study of its genome, we constructed a BAC library (TG__Ba) using DNA from livers of females. The BAC library consists of 147,456 clones with 98% containing inserts of an average size of 134 kb and represents 15.5 haploid genome equivalents. By sequencing a whole BAC, a full-length androgen receptor open reading frame was identified, the first in an avian species. Comparison of BAC end sequences and the whole BAC sequence with the chicken genome draft sequence showed a high degree of conserved synteny between the zebra finch and the chicken genome.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Tentilhões/genética , Biblioteca Genômica , Fases de Leitura Aberta/genética , Receptores Androgênicos/genética , Animais , Sequência de Bases , Comportamento Animal/fisiologia , Galinhas/genética , Evolução Molecular , Feminino , Dados de Sequência Molecular
6.
Genome Res ; 16(1): 140-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16344555

RESUMO

Rice (Oryza sativa L.) is the most important food crop in the world and a model system for plant biology. With the completion of a finished genome sequence we must now functionally characterize the rice genome by a variety of methods, including comparative genomic analysis between cereal species and within the genus Oryza. Oryza contains two cultivated and 22 wild species that represent 10 distinct genome types. The wild species contain an essentially untapped reservoir of agriculturally important genes that must be harnessed if we are to maintain a safe and secure food supply for the 21st century. As a first step to functionally characterize the rice genome from a comparative standpoint, we report the construction and analysis of a comprehensive set of 12 BAC libraries that represent the 10 genome types of Oryza. To estimate the number of clones required to generate 10 genome equivalent BAC libraries we determined the genome sizes of nine of the 12 species using flow cytometry. Each library represents a minimum of 10 genome equivalents, has an average insert size range between 123 and 161 kb, an average organellar content of 0.4%-4.1% and nonrecombinant content between 0% and 5%. Genome coverage was estimated mathematically and empirically by hybridization and extensive contig and BAC end sequence analysis. A preliminary analysis of BAC end sequences of clones from these libraries indicated that LTR retrotransposons are the predominant class of repeat elements in Oryza and a roughly linear relationship of these elements with genome size was observed.


Assuntos
Cromossomos Artificiais Bacterianos , Genoma de Planta/genética , Biblioteca Genômica , Oryza/genética , Retroelementos/genética , Sequência de Bases , Dados de Sequência Molecular , Análise de Sequência de DNA/métodos
7.
BMC Plant Biol ; 5: 10, 2005 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-15955246

RESUMO

BACKGROUND: The lycophytes are an ancient lineage of vascular plants that diverged from the seed plant lineage about 400 Myr ago. Although the lycophytes occupy an important phylogenetic position for understanding the evolution of plants and their genomes, no genomic resources exist for this group of plants. RESULTS: Here we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from the lycophyte Selaginella moellendorffii. Based on cell flow cytometry, this species has the smallest genome size among the different lycophytes tested, including Huperzia lucidula, Diphaiastrum digita, Isoetes engelmanii and S. kraussiana. The arrayed BAC library consists of 9126 clones; the average insert size is estimated to be 122 kb. Inserts of chloroplast origin account for 2.3% of the clones. The BAC library contains an estimated ten genome-equivalents based on DNA hybridizations using five single-copy and two duplicated S. moellendorffii genes as probes. CONCLUSION: The S. moellenforffii BAC library, the first to be constructed from a lycophyte, will be useful to the scientific community as a resource for comparative plant genomics and evolution.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Biblioteca Gênica , Genoma de Planta , Genômica , Selaginellaceae/genética , Clonagem Molecular , Citometria de Fluxo , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...