Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-26, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726567

RESUMO

The emergence of the multi-and extensively drug-resistant (MDR and XDR) strains of Mycobacterium tuberculosis (M.tb), necessitates paradigm-shifting therapeutic approaches. The impermeable waxy lipid layer, primarily composed of mycolic acids, is a key factor in conferring resistance to conventional drugs. This study introduces a novel strategy to combat drug resistance by targeting Methoxy mycolic acid synthase 3 (MmaA3), a critical enzyme in the mycolic acid biosynthesis pathway. MmaA3 is responsible for the O-methylation of hydroxymycolate precursors and emerges as a promising therapeutic target. Through homology-based modeling, we generated a three-dimensional structure of MmaA3, providing crucial insights into its structural characteristics. High throughput virtual screening was performed against the MmaA3 model, using diverse sources: knowledge-based, FDA-approved Drugbank, and Asinex-Elite libraries. Through rigorous computational analyses, including binding affinity assessments, molecular interactions analysis, and binding free energy calculations, potential inhibitors of MmaA3 have been identified. Subsequent validation studies evaluated the stability of top protein-ligand complexes, and free energy calculations using molecular dynamics simulations. The stability of complexes within the catalytic site was confirmed through RMSD and RMSF profile analyses. Furthermore, binding free energy calculations using the MM-GBSA approach revealed significant binding affinity of identified ligands for MmaA3 target protein, comparable to its substrate/cofactors. These findings underscore the potential of the proposed molecules as candidates for further experimental exploration, offering promising avenues for the development of effective inhibitors against M.tb. Overall, our research contributes to significantly advancing the formulation of progressive therapeutic strategies in combating drug-resistant tuberculosis.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-26, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37587906

RESUMO

The human gastric pathogen Helicobacter pylori chronically affects the gastric mucosal layer of approximately half of world's population. The emergence of resistant strains urges the need for identification of novel and selective drug against new molecular targets. A ubiquitous enzyme, Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), is considered as first line of defense against uracil mis-incorporation into DNA, and essential for genome integrity. Lack of dUTPase triggers an elevated recombination frequency, DNA breaks and ultimately cell death. Hence, dUTPase can be considered as a promising target for development of novel lead inhibitor compounds in H. pylori treatment. Herein, we report the generation of three-dimensional model of the target protein using comparative modelling and its validation. To identify dUTPase inhibitors, a high throughput virtual screening approach utilizing Knowledge-based inhibitors and DrugBank database was implemented. Top ranked compounds were scrutinized based on investigations of the protein-ligand interaction fingerprints, molecular interaction maps and binding affinities and the drug potentiality. The best ligands were studied further for complex stability and intermolecular interaction profiling with respect to time under 100 ns classical molecular dynamic stimulation, establishing significant stability in dynamic states as observed from RMSD and RMSF parameters and interactions with the catalytic site residues. The binding free energy calculation computed using MM-GBSA method from the MD simulation trajectories demonstrated that our molecules possess strong binding affinity towards the Helicobacter pylori dUTPase protein. We conclude that our proposed molecules may be potential lead molecules for effective inhibition against the H. pylori dUTPase protein subject to experimental validation.Communicated by Ramaswamy H. Sarma.

3.
J Mol Recognit ; 36(9): e3049, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553866

RESUMO

Helicobacter pylori is the most common cause of gastric ulcers and is associated with gastric cancer. The enzyme HppA of class C nonspecific acid phosphohydrolases (NSAPs) of H. pylori plays a crucial role in the electron transport chain. Herein, we report an in silico homology model of HppA consisting of a monomeric α + ß model. A high throughput structure-based virtual screening approach yielded potential inhibitors against HppA with higher binding energies. Further analyses of molecular interaction maps and protein-ligand fingerprints, followed by molecular mechanics-generalized Born surface area (MM-GBSA) end point binding energy calculations of docked complexes, resulted in the detection of top binders/ligands. Our investigations identified potential substrate-competitive small molecule inhibitors of HppA, with admissible pharmacokinetic properties. These molecules may provide a starting point for developing novel therapeutic agents against H. pylori.


Assuntos
Fosfatase Ácida , Helicobacter pylori , Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Helicobacter pylori/química , Helicobacter pylori/metabolismo , Simulação de Dinâmica Molecular , Ensaios de Triagem em Larga Escala , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...