Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Biol ; 36(1): e13784, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34114682

RESUMO

Coastal zones, which connect terrestrial and aquatic ecosystems, are among the most resource-rich regions globally and home to nearly 40% of the global human population. Because human land-based activities can alter natural processes in ways that affect adjacent aquatic ecosystems, land-sea interactions are increasingly recognized as critical to coastal conservation planning and governance. However, the complex socioeconomic dynamics inherent in coastal and marine socioecological systems (SESs) have received little consideration. Drawing on knowledge generalized from long-term studies in Caribbean Nicaragua, we devised a conceptual framework that clarifies the multiple ways socioeconomically driven behavior can link the land and sea. In addition to other ecosystem effects, the framework illustrates how feedbacks resulting from changes to aquatic resources can influence terrestrial resource management decisions and land uses. We assessed the framework by applying it to empirical studies from a variety of coastal SESs. The results suggest its broad applicability and highlighted the paucity of research that explicitly investigates the effects of human behavior on coastal SES dynamics. We encourage researchers and policy makers to consider direct, indirect, and bidirectional cross-ecosystem links that move beyond traditionally recognized land-to-sea processes.


Los Usuarios de Recursos como Conexiones entre la Tierra y el Mar dentro de los Sistemas Socioecológicos Marinos y Costeros Resumen Las zonas costeras, que conectan los ecosistemas terrestres y acuáticos, se encuentran entre las regiones más ricas en recursos a nivel mundial y además albergan a casi el 40% de la población humana de todo el mundo. Ya que las actividades humanas terrestres pueden alterar los procesos naturales de manera que terminan por afectar a los ecosistemas acuáticos adyacentes, cada vez se reconoce más a las interacciones tierra-mar como críticas para la planeación de la conservación y la gestión costera. Sin embargo, las complejas dinámicas socioeconómicas inherentes a los sistemas socioecológicos (SES) marinos y costeros han recibido poca atención. Con el conocimiento generalizado a partir de los estudios a largo plazo realizados en el Caribe de Nicaragua como punto de partida, diseñamos un marco conceptual que clarifica las múltiples formas en las que el comportamiento con origen socioeconómico puede conectar a la tierra y al mar. Sumado a otros efectos de los ecosistemas, el marco conceptual ilustró cómo los comentarios resultantes de los cambios ocurridos en los recursos acuáticos pueden influir sobre las decisiones de manejo de recursos terrestres y de uso de suelo. Evaluamos el marco conceptual mediante su aplicación a los estudios empíricos de una variedad de SES costeros. Los resultados sugirieron su aplicabilidad generalizada y resaltaron la escasez de investigaciones busquen específicamente los efectos del comportamiento humano sobre las dinámicas de los SES costeros. Alentamos a los investigadores y a los formuladores de políticas a considerar las conexiones directas, indirectas y bidireccionales entre ecosistemas que van más allá de los procesos de tierra a mar reconocidos tradicionalmente.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Humanos , Nicarágua
2.
New Phytol ; 229(1): 296-307, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32762047

RESUMO

The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition. Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning.


Assuntos
Ecossistema , Nitrogênio , Pradaria , Folhas de Planta , Plantas , Poaceae , Solo
3.
mBio ; 11(1)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964725

RESUMO

The strategy that microbial decomposers take with respect to using substrate for growth versus maintenance is one essential biological determinant of the propensity of carbon to remain in soil. To quantify the environmental sensitivity of this key physiological trade-off, we characterized the carbon use efficiency (CUE) of 23 soil bacterial isolates across seven phyla at three temperatures and with up to four substrates. Temperature altered CUE in both an isolate-specific manner and a substrate-specific manner. We searched for genes correlated with the temperature sensitivity of CUE on glucose and deemed those functional genes which were similarly correlated with CUE on other substrates to be validated as markers of CUE. Ultimately, we did not identify any such robust functional gene markers of CUE or its temperature sensitivity. However, we found a positive correlation between rRNA operon copy number and CUE, opposite what was expected. We also found that inefficient taxa increased their CUE with temperature, while those with high CUE showed a decrease in CUE with temperature. Together, our results indicate that CUE is a flexible parameter within bacterial taxa and that the temperature sensitivity of CUE is better explained by observed physiology than by genomic composition across diverse taxa. We conclude that the bacterial CUE response to temperature and substrate is more variable than previously thought.IMPORTANCE Soil microbes respond to environmental change by altering how they allocate carbon to growth versus respiration-or carbon use efficiency (CUE). Ecosystem and Earth System models, used to project how global soil C stocks will continue to respond to the climate crisis, often assume that microbes respond homogeneously to changes in the environment. In this study, we quantified how CUE varies with changes in temperature and substrate quality in soil bacteria and evaluated why CUE characteristics may differ between bacterial isolates and in response to altered growth conditions. We found that bacterial taxa capable of rapid growth were more efficient than those limited to slow growth and that taxa with high CUE were more likely to become less efficient at higher temperatures than those that were less efficient to begin with. Together, our results support the idea that the CUE temperature response is constrained by both growth rate and CUE and that this partly explains how bacteria acclimate to a warming world.


Assuntos
Bactérias , Carbono/química , Microbiologia do Solo , Solo/química , Temperatura , Bactérias/classificação , Bactérias/genética , Ciclo do Carbono , Ecossistema , Metagenoma , Metagenômica , Filogenia
4.
Appl Plant Sci ; 7(4): e01237, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31024781

RESUMO

PREMISE OF THE STUDY: Fine-scale variation in temperature and soil moisture contribute to microhabitats across the landscape, affecting plant phenology, distribution, and fitness. The recent availability of compact and inexpensive temperature and humidity data loggers such as iButtons has facilitated research on microclimates. METHODS AND RESULTS: Here, we highlight the use of iButtons in three distinct settings: comparisons of empirical data to modeled climate data for rare rock ferns in the genus Asplenium in eastern North America; generation of fine-scale data to predict flowering time and vernalization responsiveness of crop wild relatives of chickpea from southeastern Anatolia; and measurements of extreme thermal variation of solar array installations in Vermont. DISCUSSION: We highlight a range of challenges with iButtons, including serious limitations of the Hygrochron function that affect their utility for measuring soil moisture, and methods for protecting them from the elements and from human interference. Finally, we provide MATLAB code to facilitate the processing of raw iButton data.

6.
PLoS One ; 12(10): e0186683, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29077748

RESUMO

Anthropogenic threats to natural systems can be exacerbated due to connectivity between marine, freshwater, and terrestrial ecosystems, complicating the already daunting task of governance across the land-sea interface. Globalization, including new access to markets, can change social-ecological, land-sea linkages via livelihood responses and adaptations by local people. As a first step in understanding these trans-ecosystem effects, we examined exit and entry decisions of artisanal fishers and smallholder farmers on the rapidly globalizing Caribbean coast of Nicaragua. We found that exit and entry decisions demonstrated clear temporal and spatial patterns and that these decisions differed by livelihood. In addition to household characteristics, livelihood exit and entry decisions were strongly affected by new access to regional and global markets. The natural resource implications of these livelihood decisions are potentially profound as they provide novel linkages and spatially-explicit feedbacks between terrestrial and marine ecosystems. Our findings support the need for more scientific inquiry in understanding trans-ecosystem tradeoffs due to linked-livelihood transitions as well as the need for a trans-ecosystem approach to natural resource management and development policy in rapidly changing coastal regions.


Assuntos
Conservação dos Recursos Naturais , Desastres , Ecossistema , Internacionalidade , Animais , Nicarágua
7.
PLoS One ; 11(9): e0162529, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27606619

RESUMO

Tropical forest conversion to pasture, which drives greenhouse gas emissions, soil degradation, and biodiversity loss, remains a pressing socio-ecological challenge. This problem has spurred increased interest in the potential of small-scale agroforestry systems to couple sustainable agriculture with biodiversity conservation, particularly in rapidly developing areas of the tropics. In addition to providing natural resources (i.e. food, medicine, lumber), agroforestry systems have the potential to maintain higher levels of biodiversity and greater biomass than lower diversity crop or pasture systems. Greater plant diversity may also enhance soil quality, further supporting agricultural productivity in nutrient-limited tropical systems. Yet, the nature of these relationships remains equivocal. To better understand how different land use strategies impact ecosystem services, we characterized the relationships between plant diversity (including species richness, phylogenetic diversity, and natural resource diversity), and soil quality within pasture, agroforests, and secondary forests, three common land use types maintained by small-scale farmers in the Pearl Lagoon Basin, Nicaragua. The area is undergoing accelerated globalization following the 2007 completion of the region's first major road; a change which is expected to increase forest conversion for agriculture. However, farmer agrobiodiversity maintenance in the Basin was previously found to be positively correlated with affiliation to local agricultural NGOs through the maintenance of agroforestry systems, despite these farmers residing in the communities closest to the new road, highlighting the potential for maintaining diverse agroforestry agricultural strategies despite heightened globalization pressures. We found that agroforestry sites tended to have higher surface soil %C, %N, and pH relative to neighboring to secondary forest, while maintaining comparable plant diversity. In contrast, pasture reduced species richness, phylogenetic diversity, and natural resource diversity. No significant relationships were found between plant diversity and the soil properties assessed; however higher species richness and phylodiversity was positively correlated with natural resource diversity. These finding suggest that small, diversified agroforestry systems may be a viable strategy for promoting both social and ecological functions in eastern Nicaragua and other rapidly developing areas of the tropics.


Assuntos
Agricultura , Biodiversidade , Agricultura Florestal , Oceano Atlântico , Geografia , Nicarágua , Solo , Especificidade da Espécie
8.
Glob Chang Biol ; 22(4): 1421-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26599833

RESUMO

Understanding the mechanisms underlying ecosystem resilience - why some systems have an irreversible response to disturbances while others recover - is critical for conserving biodiversity and ecosystem function in the face of global change. Despite the widespread acceptance of a positive relationship between biodiversity and resilience, empirical evidence for this relationship remains fairly limited in scope and localized in scale. Assessing resilience at the large landscape and regional scales most relevant to land management and conservation practices has been limited by the ability to measure both diversity and resilience over large spatial scales. Here, we combined tools used in large-scale studies of biodiversity (remote sensing and trait databases) with theoretical advances developed from small-scale experiments to ask whether the functional diversity within a range of woodland and forest ecosystems influences the recovery of productivity after wildfires across the four-corner region of the United States. We additionally asked how environmental variation (topography, macroclimate) across this geographic region influences such resilience, either directly or indirectly via changes in functional diversity. Using path analysis, we found that functional diversity in regeneration traits (fire tolerance, fire resistance, resprout ability) was a stronger predictor of the recovery of productivity after wildfire than the functional diversity of seed mass or species richness. Moreover, slope, elevation, and aspect either directly or indirectly influenced the recovery of productivity, likely via their effect on microclimate, while macroclimate had no direct or indirect effects. Our study provides some of the first direct empirical evidence for functional diversity increasing resilience at large spatial scales. Our approach highlights the power of combining theory based on local-scale studies with tools used in studies at large spatial scales and trait databases to understand pressing environmental issues.


Assuntos
Biodiversidade , Incêndios , Modelos Teóricos , Bases de Dados Factuais , Florestas , Tecnologia de Sensoriamento Remoto , Estados Unidos
9.
Nature ; 497(7451): 615-8, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23676669

RESUMO

High latitudes contain nearly half of global soil carbon, prompting interest in understanding how the Arctic terrestrial carbon balance will respond to rising temperatures. Low temperatures suppress the activity of soil biota, retarding decomposition and nitrogen release, which limits plant and microbial growth. Warming initially accelerates decomposition, increasing nitrogen availability, productivity and woody-plant dominance. However, these responses may be transitory, because coupled abiotic-biotic feedback loops that alter soil-temperature dynamics and change the structure and activity of soil communities, can develop. Here we report the results of a two-decade summer warming experiment in an Alaskan tundra ecosystem. Warming increased plant biomass and woody dominance, indirectly increased winter soil temperature, homogenized the soil trophic structure across horizons and suppressed surface-soil-decomposer activity, but did not change total soil carbon or nitrogen stocks, thereby increasing net ecosystem carbon storage. Notably, the strongest effects were in the mineral horizon, where warming increased decomposer activity and carbon stock: a 'biotic awakening' at depth.


Assuntos
Ciclo do Carbono , Carbono/análise , Clima Frio , Ecossistema , Aquecimento Global/estatística & dados numéricos , Solo/química , Temperatura , Animais , Regiões Árticas , Biomassa , Análise Discriminante , Cadeia Alimentar , História do Século XX , História do Século XXI , Nitrogênio/metabolismo , Fotossíntese , Plantas/metabolismo , Chuva , Solo/análise , Solo/parasitologia , Microbiologia do Solo , Fatores de Tempo , Incerteza
10.
PLoS One ; 7(8): e43765, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928029

RESUMO

Concerns over fishing impacts on marine populations and ecosystems have intensified the need to improve ocean management. One increasingly popular market-based instrument for ecological stewardship is the use of certification and eco-labeling programs to highlight sustainable fisheries with low environmental impacts. The Marine Stewardship Council (MSC) is the most prominent of these programs. Despite widespread discussions about the rigor of the MSC standards, no comprehensive analysis of the performance of MSC-certified fish stocks has yet been conducted. We compared status and abundance trends of 45 certified stocks with those of 179 uncertified stocks, finding that 74% of certified fisheries were above biomass levels that would produce maximum sustainable yield, compared with only 44% of uncertified fisheries. On average, the biomass of certified stocks increased by 46% over the past 10 years, whereas uncertified fisheries increased by just 9%. As part of the MSC process, fisheries initially go through a confidential pre-assessment process. When certified fisheries are compared with those that decline to pursue full certification after pre-assessment, certified stocks had much lower mean exploitation rates (67% of the rate producing maximum sustainable yield vs. 92% for those declining to pursue certification), allowing for more sustainable harvesting and in many cases biomass rebuilding. From a consumer's point of view this means that MSC-certified seafood is 3-5 times less likely to be subject to harmful fishing than uncertified seafood. Thus, MSC-certification accurately identifies healthy fish stocks and conveys reliable information on stock status to seafood consumers.


Assuntos
Conservação dos Recursos Naturais , Peixes , Rotulagem de Alimentos/normas , Alimentos Marinhos/normas , Animais , Controle de Qualidade , Fatores de Tempo
11.
New Phytol ; 196(1): 68-78, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22924404

RESUMO

Ecosystems across the biosphere are subject to rapid changes in elemental balance and climatic regimes. A major force structuring ecological responses to these perturbations lies in the stoichiometric flexibility of systems - the ability to adjust their elemental balance whilst maintaining function. The potential for stoichiometric flexibility underscores the utility of the application of a framework highlighting the constraints and consequences of elemental mass balance and energy cycling in biological systems to address global change phenomena. Improvement in the modeling of ecological responses to disturbance requires the consideration of the stoichiometric flexibility of systems within and across relevant scales. Although a multitude of global change studies over various spatial and temporal scales exist, the explicit consideration of the role played by stoichiometric flexibility in linking micro-scale to macro-scale biogeochemical processes in terrestrial ecosystems remains relatively unexplored. Focusing on terrestrial systems under change, we discuss the mechanisms by which stoichiometric flexibility might be expressed and connected from organisms to ecosystems. We suggest that the transition from the expression of stoichiometric flexibility within individuals to the community and ecosystem scales is a key mechanism regulating the extent to which environmental perturbation may alter ecosystem carbon and nutrient cycling dynamics.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Mudança Climática , Ecossistema , Ciclo do Nitrogênio , Fósforo/metabolismo , Humanos
12.
Proc Natl Acad Sci U S A ; 107(40): 17217-22, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20855605

RESUMO

Ecologists have long observed that consumers can maintain species diversity in communities of their prey. Many theories of how consumers mediate diversity invoke a tradeoff between species' competitive ability and their ability to withstand predation. Under this constraint, the best competitors are also most susceptible to consumers, preventing them from excluding other species. However, empirical evidence for competition-defense tradeoffs is limited and, as such, the mechanisms by which consumers regulate diversity remain uncertain. We performed a meta-analysis of 36 studies to evaluate the prevalence of the competition-defense tradeoff and its role in maintaining diversity in plant communities. We quantified species' responses to experimental resource addition and consumer removal as estimates of competitive ability and resistance to consumers, respectively. With this analysis, we found mixed empirical evidence for a competition-defense tradeoff; in fact, competitive ability tended to be weakly positively correlated with defense overall. However, when present, negative relationships between competitive ability and defense influenced species diversity in the manner predicted by theory. In the minority of communities for which a tradeoff was detected, species evenness was higher, and resource addition and consumer removal reduced diversity. Our analysis reframes the commonly held notion that consumers structure plant communities through a competition-defense tradeoff. Such a tradeoff can maintain diversity when present, but negative correlations between competitive ability and defense were less common than is often assumed. In this respect, this study supports an emerging theoretical paradigm in which predation interacts with competition to both enhance and reduce species diversity.


Assuntos
Biodiversidade , Plantas , Dinâmica Populacional , Ecossistema , Modelos Biológicos
13.
J Exp Zool B Mol Dev Evol ; 304(6): 558-69, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15968684

RESUMO

We propose a two-step model for the evolutionary origin of the turtle shell. We show here that the carapacial ridge (CR) is critical for the entry of the ribs into the dorsal dermis. Moreover, we demonstrate that the maintenance of the CR and its ability to attract the migrating rib precursor cells depend upon fibroblast growth factor (FGF) signaling. Inhibitors of FGF allow the CR to degenerate, with the consequent migration of ribs along the ventral body wall. Beads containing FGF10 can rearrange rib migration in the chick, suggesting that the CR FGF10 plays an important role in attracting the rib rudiments. The co-ordinated growth of the carapacial plate and the ribs may be a positive feedback loop (similar to that of the limbs) caused by the induction of Fgf8 in the distal tips of the ribs by the FGF10-secreting mesenchyme of the CR. Once in the dermis, the ribs undergo endochrondral ossification. We provide evidence that the ribs act as signaling centers for the dermal ossification and that this ossification is due to bone morphogenetic proteins secreted by the rib. Thus, once the ribs are within the dermis, the ossification of the dermis is not difficult to achieve. This relatively rapid means of carapace formation would allow for the appearance of turtles in the fossil record without obvious intermediates.


Assuntos
Desenvolvimento Ósseo , Modelos Biológicos , Comunicação Parácrina , Tartarugas/anatomia & histologia , Tartarugas/embriologia , Animais , Evolução Biológica , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/citologia , Embrião de Galinha , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Costelas/embriologia , Especificidade da Espécie , Tartarugas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...