Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell Rep ; 43(2): 113717, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38285738

RESUMO

The homeostatic regulation of serine palmitoyltransferase (SPT) activity in yeast involves N-terminal phosphorylation of Orm proteins, while higher eukaryotes lack these phosphorylation sites. Although recent studies have indicated a conserved ceramide-mediated feedback inhibition of the SPT-ORM/ORMDL complex in higher eukaryotes, its conservation and relationship with phosphorylation regulation in yeast remain unclear. Here, we determine the structure of the yeast SPT-Orm2 complex in a dephosphomimetic state and identify an evolutionarily conserved ceramide-sensing site. Ceramide stabilizes the dephosphomimetic Orm2 in an inhibitory conformation, facilitated by an intramolecular ß-sheet between the N- and C-terminal segments of Orm2. Moreover, we find that a phosphomimetic mutant of Orm2, positioned adjacent to its intramolecular ß-sheet, destabilizes the inhibitory conformation of Orm2. Taken together, our findings suggest that both Orm dephosphorylation and ceramide binding are crucial for suppressing SPT activity in yeast. This highlights a distinctive regulatory mechanism in yeast involving the collaborative actions of phosphorylation and ceramide.


Assuntos
Ceramidas , Proteínas de Saccharomyces cerevisiae , Ceramidas/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Fosforilação , Proteínas/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Neurol Neurosurg Psychiatry ; 95(2): 103-113, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38041679

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motor neurons with varying ages of onset, progression and pathomechanisms. Monogenic childhood-onset ALS, although rare, forms an important subgroup of ALS. We recently reported specific SPTLC1 variants resulting in sphingolipid overproduction as a cause for juvenile ALS. Here, we report six patients from six independent families with a recurrent, de novo, heterozygous variant in SPTLC2 c.778G>A [p.Glu260Lys] manifesting with juvenile ALS. METHODS: Clinical examination of the patients along with ancillary and genetic testing, followed by biochemical investigation of patients' blood and fibroblasts, was performed. RESULTS: All patients presented with early-childhood-onset progressive weakness, with signs and symptoms of upper and lower motor neuron degeneration in multiple myotomes, without sensory neuropathy. These findings were supported on ancillary testing including nerve conduction studies and electromyography, muscle biopsies and muscle ultrasound studies. Biochemical investigations in plasma and fibroblasts showed elevated levels of ceramides and unrestrained de novo sphingolipid synthesis. Our studies indicate that SPTLC2 variant [c.778G>A, p.Glu260Lys] acts distinctly from hereditary sensory and autonomic neuropathy (HSAN)-causing SPTLC2 variants by causing excess canonical sphingolipid biosynthesis, similar to the recently reported SPTLC1 ALS associated pathogenic variants. Our studies also indicate that serine supplementation, which is a therapeutic in SPTLC1 and SPTCL2-associated HSAN, is expected to exacerbate the excess sphingolipid synthesis in serine palmitoyltransferase (SPT)-associated ALS. CONCLUSIONS: SPTLC2 is the second SPT-associated gene that underlies monogenic, juvenile ALS and further establishes alterations of sphingolipid metabolism in motor neuron disease pathogenesis. Our findings also have important therapeutic implications: serine supplementation must be avoided in SPT-associated ALS, as it is expected to drive pathogenesis further.


Assuntos
Esclerose Lateral Amiotrófica , Neuropatias Hereditárias Sensoriais e Autônomas , Doenças Neurodegenerativas , Criança , Humanos , Esclerose Lateral Amiotrófica/genética , Esfingolipídeos , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Serina
3.
Sci Adv ; 9(13): eadg0728, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989369

RESUMO

The serine palmitoyltransferase (SPT) complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis in all eukaryotes. ORM/ORMDL proteins are negative regulators of SPT that respond to cellular sphingolipid levels. However, the molecular basis underlying ORM/ORMDL-dependent homeostatic regulation of SPT is not well understood. We determined the cryo-electron microscopy structure of Arabidopsis SPT-ORM1 complex, composed of LCB1, LCB2a, SPTssa, and ORM1, in an inhibited state. A ceramide molecule is sandwiched between ORM1 and LCB2a in the cytosolic membrane leaflet. Ceramide binding is critical for the ORM1-dependent SPT repression, and dihydroceramides and phytoceramides differentially affect this repression. A hybrid ß sheet, formed by the amino termini of ORM1 and LCB2a and induced by ceramide binding, stabilizes the amino terminus of ORM1 in an inhibitory conformation. Our findings provide mechanistic insights into sphingolipid homeostatic regulation via the binding of ceramide to the SPT-ORM/ORMDL complex that may have implications for plant-specific processes such as the hypersensitive response for microbial pathogen resistance.


Assuntos
Arabidopsis , Esfingolipídeos , Esfingolipídeos/metabolismo , Arabidopsis/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Microscopia Crioeletrônica , Proteínas de Membrana/metabolismo , Ceramidas/metabolismo , Homeostase
4.
Brain ; 146(4): 1420-1435, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36718090

RESUMO

Sphingolipids are a diverse family of lipids with critical structural and signalling functions in the mammalian nervous system, where they are abundant in myelin membranes. Serine palmitoyltransferase, the enzyme that catalyses the rate-limiting reaction of sphingolipid synthesis, is composed of multiple subunits including an activating subunit, SPTSSA. Sphingolipids are both essential and cytotoxic and their synthesis must therefore be tightly regulated. Key to the homeostatic regulation are the ORMDL proteins that are bound to serine palmitoyltransferase and mediate feedback inhibition of enzymatic activity when sphingolipid levels become excessive. Exome sequencing identified potential disease-causing variants in SPTSSA in three children presenting with a complex form of hereditary spastic paraplegia. The effect of these variants on the catalytic activity and homeostatic regulation of serine palmitoyltransferase was investigated in human embryonic kidney cells, patient fibroblasts and Drosophila. Our results showed that two different pathogenic variants in SPTSSA caused a hereditary spastic paraplegia resulting in progressive motor disturbance with variable sensorineural hearing loss and language/cognitive dysfunction in three individuals. The variants in SPTSSA impaired the negative regulation of serine palmitoyltransferase by ORMDLs leading to excessive sphingolipid synthesis based on biochemical studies and in vivo studies in Drosophila. These findings support the pathogenicity of the SPTSSA variants and point to excessive sphingolipid synthesis due to impaired homeostatic regulation of serine palmitoyltransferase as responsible for defects in early brain development and function.


Assuntos
Paraplegia Espástica Hereditária , Animais , Criança , Humanos , Paraplegia Espástica Hereditária/genética , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
5.
Neuropathol Appl Neurobiol ; 48(7): e12842, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35904184

RESUMO

AIMS: SPTLC1-related disorder is a late onset sensory-autonomic neuropathy associated with perturbed sphingolipid homeostasis which can be improved by supplementation with the serine palmitoyl-CoA transferase (SPT) substrate, l-serine. Recently, a juvenile form of motor neuron disease has been linked to SPTLC1 variants. Variants affecting the p.S331 residue of SPTLC1 cause a distinct phenotype, whose pathogenic basis has not been established. This study aims to define the neuropathological and biochemical consequences of the SPTLC1 p.S331 variant, and test response to l-serine in this specific genotype. METHODS: We report clinical and neurophysiological characterisation of two unrelated children carrying distinct p.S331 SPTLC1 variants. The neuropathology was investigated by analysis of sural nerve and skin innervation. To clarify the biochemical consequences of the p.S331 variant, we performed sphingolipidomic profiling of serum and skin fibroblasts. We also tested the effect of l-serine supplementation in skin fibroblasts of patients with p.S331 mutations. RESULTS: In both patients, we recognised an early onset phenotype with prevalent progressive motor neuron disease. Neuropathology showed severe damage to the sensory and autonomic systems. Sphingolipidomic analysis showed the coexistence of neurotoxic deoxy-sphingolipids with an excess of canonical products of the SPT enzyme. l-serine supplementation in patient fibroblasts reduced production of toxic 1-deoxysphingolipids but further increased the overproduction of sphingolipids. CONCLUSIONS: Our findings suggest that p.S331 SPTLC1 variants lead to an overlap phenotype combining features of sensory and motor neuropathies, thus proposing a continuum in the spectrum of SPTLC1-related disorders. l-serine supplementation in these patients may be detrimental.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Doença dos Neurônios Motores , Doenças do Sistema Nervoso Periférico , Humanos , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/genética , Mutação , Esfingolipídeos , Serina/química , Serina/genética
6.
Nat Med ; 27(7): 1197-1204, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34059824

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease of the lower and upper motor neurons with sporadic or hereditary occurrence. Age of onset, pattern of motor neuron degeneration and disease progression vary widely among individuals with ALS. Various cellular processes may drive ALS pathomechanisms, but a monogenic direct metabolic disturbance has not been causally linked to ALS. Here we show SPTLC1 variants that result in unrestrained sphingoid base synthesis cause a monogenic form of ALS. We identified four specific, dominantly acting SPTLC1 variants in seven families manifesting as childhood-onset ALS. These variants disrupt the normal homeostatic regulation of serine palmitoyltransferase (SPT) by ORMDL proteins, resulting in unregulated SPT activity and elevated levels of canonical SPT products. Notably, this is in contrast with SPTLC1 variants that shift SPT amino acid usage from serine to alanine, result in elevated levels of deoxysphingolipids and manifest with the alternate phenotype of hereditary sensory and autonomic neuropathy. We custom designed small interfering RNAs that selectively target the SPTLC1 ALS allele for degradation, leave the normal allele intact and normalize sphingolipid levels in vitro. The role of primary metabolic disturbances in ALS has been elusive; this study defines excess sphingolipid biosynthesis as a fundamental metabolic mechanism for motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esfingolipídeos/biossíntese , Adolescente , Adulto , Alelos , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Sistemas CRISPR-Cas , Criança , Feminino , Genes Dominantes , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Adulto Jovem
7.
Nat Struct Mol Biol ; 28(3): 240-248, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33558761

RESUMO

Sphingolipids are essential lipids in eukaryotic membranes. In humans, the first and rate-limiting step of sphingolipid synthesis is catalyzed by the serine palmitoyltransferase holocomplex, which consists of catalytic components (SPTLC1 and SPTLC2) and regulatory components (ssSPTa and ORMDL3). However, the assembly, substrate processing and regulation of the complex are unclear. Here, we present 8 cryo-electron microscopy structures of the human serine palmitoyltransferase holocomplex in various functional states at resolutions of 2.6-3.4 Å. The structures reveal not only how catalytic components recognize the substrate, but also how regulatory components modulate the substrate-binding tunnel to control enzyme activity: ssSPTa engages SPTLC2 and shapes the tunnel to determine substrate specificity. ORMDL3 blocks the tunnel and competes with substrate binding through its amino terminus. These findings provide mechanistic insights into sphingolipid biogenesis governed by the serine palmitoyltransferase complex.


Assuntos
Microscopia Crioeletrônica , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/ultraestrutura , Sítios de Ligação , Biocatálise , Domínio Catalítico , Humanos , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Mutação , Reprodutibilidade dos Testes , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/genética , Especificidade por Substrato
8.
Transfusion ; 59(7): 2308-2315, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31059586

RESUMO

BACKGROUND: Transfusion of 2 units of red blood cells (RBCs) for Hb ≤80 g/L is the prevailing liberal practice for patients undergoing intensive treatment for acute leukemia or hematopoietic transplant across North America. There is little evidence regarding optimal transfusion targets in these highly transfusion-dependent patient populations. STUDY DESIGN AND METHODS: This was a retrospective pre-post cohort study of consecutive patients admitted to Kingston Health Sciences Center between April through December 2016 (pre) and April through December 2017 (post) for acute leukemia induction chemotherapy or high dose chemotherapy (HDCT) for autologous stem cell transplantation (ASCT). The pre-cohort was transfused using a liberal threshold (2 units of RBCs for Hb ≤80 g/L) and the post-cohort using a more restrictive threshold (1 unit RBCs for Hb ≤70 g/L), implemented with a computerized physician order entry form. Primary outcome was number of RBC units transfused per inpatient day. Secondary outcomes included inpatient mortality and select morbidity measures. RESULTS: 124 patients underwent 134 treatment courses: 62 courses of induction chemotherapy (pre = 26, post = 36) and 72 courses of HDCT for ASCT (pre = 39, post = 33). There was a significant decrease in median RBC utilization per admission in both patient populations: 10.5 versus 6.7 in the leukemia group (p = 0.01) and 2.0 versus 1.0 in the ASCT group (p = 0.04). This reduction was seen without a difference in inpatient mortality, length of stay, falls, serious bleeds, requirement for ICU, or time to engraftment post ASCT. CONCLUSIONS: A restrictive transfusion strategy in patients receiving intensive chemotherapy for acute leukemia or ASCT decreased inpatient RBC usage without increasing adverse inpatient events.


Assuntos
Transfusão de Eritrócitos , Quimioterapia de Indução , Leucemia/mortalidade , Leucemia/terapia , Transplante de Células-Tronco , Doença Aguda , Idoso , Autoenxertos , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taxa de Sobrevida
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 245-259, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30529276

RESUMO

Serine palmitoyltransferase (SPT), an endoplasmic reticulum-localized membrane enzymecomposed of acatalytic LCB1/LCB2 heterodimer and a small activating subunit (Tsc3 in yeast; ssSPTs in mammals), is negatively regulated by the evolutionarily conserved family of proteins known as the ORMs. In yeast, SPT, the ORMs, and the PI4P phosphatase Sac1, copurify in the "SPOTs" complex. However, neither the mechanism of ORM inhibition of SPT nor details of the interactions of the ORMs and Sac1 with SPT are known. Here we report that the first transmembrane domain (TMD1) of Lcb1 is required for ORM binding to SPT. Loss of binding is not due to altered membrane topology of Lcb1 since replacing TMD1 with a heterologous TMD restores membrane topology but not ORM binding. TMD1 deletion also eliminates ORM-dependent formation of SPT oligomers as assessed by co-immunoprecipitation assays and in vivo imaging. Expression of ORMs lacking derepressive phosphorylation sites results in constitutive SPT oligomerization, while phosphomimetic ORMs fail to induce oligomerization under any conditions. Significantly, when LCB1-RFP and LCB1ΔTMD1-GFP were coexpressed, more LCB1ΔTMD1-GFP was in the peripheral ER, suggesting ORM regulation is partially accomplished by SPT redistribution. Tsc3 deletion does not abolish ORM inhibition of SPT, indicating the ORMs do not simply prevent activation by Tsc3. Binding of Sac1 to SPT requires Tsc3, but not the ORMs, and Sac1 does not influence ORM-mediated oligomerization of SPT. Finally, yeast mutants lacking ORM regulation of SPT require the LCB-P lyase Dpl1 to maintain long-chain bases at sublethal levels.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Ligação Proteica , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Serina C-Palmitoiltransferase/fisiologia , Esfingolipídeos/metabolismo
11.
Mol Cell Biol ; 37(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28847847

RESUMO

The long noncoding RNA (lncRNA) MEG3 is significantly downregulated in pancreatic neuroendocrine tumors (PNETs). MEG3 loss corresponds with aberrant upregulation of the oncogenic hepatocyte growth factor (HGF) receptor c-MET in PNETs. Meg3 overexpression in a mouse insulin-secreting PNET cell line, MIN6, downregulates c-Met expression. However, the molecular mechanism by which MEG3 regulates c-MET is not known. Using chromatin isolation by RNA purification and sequencing (ChIRP-Seq), we identified Meg3 binding to unique genomic regions in and around the c-Met gene. In the absence of Meg3, these c-Met regions displayed distinctive enhancer-signature histone modifications. Furthermore, Meg3 relied on functional enhancer of zeste homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2), to inhibit c-Met expression. Another mechanism of lncRNA-mediated regulation of gene expression utilized triplex-forming GA-GT rich sequences. Transfection of such motifs from Meg3 RNA, termed triplex-forming oligonucleotides (TFOs), in MIN6 cells suppressed c-Met expression and enhanced cell proliferation, perhaps by modulating other targets. This study comprehensively establishes epigenetic mechanisms underlying Meg3 control of c-Met and the oncogenic consequences of Meg3 loss or c-Met gain. These findings have clinical relevance for targeting c-MET in PNETs. There is also the potential for pancreatic islet ß-cell expansion through c-MET regulation to ameliorate ß-cell loss in diabetes.


Assuntos
Insulinoma/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-met/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Camundongos , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Transcrição Gênica
12.
3 Biotech ; 7(1): 4, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28391468

RESUMO

Novel cry genes are potential candidates for resistance management strategies, due to their different structures and modes of action. Therefore, it is desirable to clone and express novel cry genes from several new isolates of Bacillus thuringiensis (Bt). In the present study, 28 Bt strains were characterized at morphological and molecular level. All these strains are Gram positive, endospore forming and had shown different crystal morphologies when viewed under the microscope. The ARDRA (16S rDNA PCR-RFLP technique) with AluI, HaeIII, HinfI and TaqI produced unique and distinguishable restriction patterns used for the molecular characterization of these isolates. Based on UPGMA clustering analysis, Bt strains showed significant molecular diversity and the dendrogram obtained differentiated 28 Bt strains into 1 major cluster at a similarity coefficient 0.56. PCR analysis demonstrated that the Bt strains showed diverse cry gene profiles with several genes per strain. The Bt strain G3C1 showed the presence of maximum cry-type genes by PCR. The toxicological characterization of these cry genes will have huge importance in transgenic technology and will be useful in transgenesis of crop plants for better resistance management.

13.
Proc Natl Acad Sci U S A ; 112(42): 12962-7, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438849

RESUMO

Sphingolipids typically have an 18-carbon (C18) sphingoid long chain base (LCB) backbone. Although sphingolipids with LCBs of other chain lengths have been identified, the functional significance of these low-abundance sphingolipids is unknown. The LCB chain length is determined by serine palmitoyltransferase (SPT) isoenzymes, which are trimeric proteins composed of two large subunits (SPTLC1 and SPTLC2 or SPTLC3) and a small subunit (SPTssa or SPTssb). Here we report the identification of an Sptssb mutation, Stellar (Stl), which increased the SPT affinity toward the C18 fatty acyl-CoA substrate by twofold and significantly elevated 20-carbon (C20) LCB production in the mutant mouse brain and eye, resulting in surprising neurodegenerative effects including aberrant membrane structures, accumulation of ubiquitinated proteins on membranes, and axon degeneration. Our work demonstrates that SPT small subunits play a major role in controlling SPT activity and substrate affinity, and in specifying sphingolipid LCB chain length in vivo. Moreover, our studies also suggest that excessive C20 LCBs or C20 LCB-containing sphingolipids impair protein homeostasis and neural functions.


Assuntos
Carbono/química , Mutação , Doenças Neurodegenerativas/enzimologia , Serina C-Palmitoiltransferase/química , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Dados de Sequência Molecular , Doenças Neurodegenerativas/genética , Homologia de Sequência de Aminoácidos , Serina C-Palmitoiltransferase/genética , Ubiquitinação
14.
Int J Endocrinol ; 2015: 149826, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26229531

RESUMO

Lipoma in patients with the multiple endocrine neoplasia type 1 (MEN1) syndrome is a type of benign fat-cell tumor that has biallelic inactivation of MEN1 that encodes menin and could serve as a model to investigate normal and pathologic fat-cell (adipocyte) proliferation and function. The role of menin and its target genes in adipocytes is not known. We used in vitro differentiation to derive matched normal and menin-deficient adipocytes from wild type (WT) and menin-null (Men1-KO) mouse embryonic stem cells (mESCs), respectively, or 3T3-L1 cells without or with menin knockdown to investigate cell size, lipid content, and gene expression changes. Adipocytes derived from Men1-KO mESCs or after menin knockdown in 3T3-L1 cells showed a 1.5-1.7-fold increase in fat-cell size. Global gene expression analysis of mESC-derived adipocytes showed that lack of menin downregulated the expression of many differentially methylated genes including the tumor suppressor long noncoding RNA Meg3 but upregulated gene expression from the prolactin gene family locus. Our results show that menin deficiency leads to fat-cell hypertrophy and provide model systems that could be used to study the regulation of fat-cell size.

15.
Mol Endocrinol ; 29(2): 224-37, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25565142

RESUMO

Biallelic inactivation of MEN1 encoding menin in pancreatic neuroendocrine tumors (PNETs) associated with the multiple endocrine neoplasia type 1 (MEN1) syndrome is well established, but how menin loss/inactivation initiates tumorigenesis is not well understood. We show that menin activates the long noncoding RNA maternally expressed gene 3 (Meg3) by histone-H3 lysine-4 trimethylation and CpG hypomethylation at the Meg3 promoter CRE site, to allow binding of the transcription factor cAMP response element-binding protein. We found that Meg3 has tumor-suppressor activity in PNET cells because the overexpression of Meg3 in MIN6 cells (insulin-secreting mouse PNET cell line) blocked cell proliferation and delayed cell cycle progression. Gene expression microarray analysis showed that Meg3 overexpression in MIN6 mouse insulinoma cells down-regulated the expression of the protooncogene c-Met (hepatocyte growth factor receptor), and these cells showed significantly reduced cell migration/invasion. Compared with normal islets, mouse or human MEN1-associated PNETs expressed less MEG3 and more c-MET. Therefore, a tumor-suppressor long noncoding RNA (MEG3) and suppressed protooncogene (c-MET) combination could elicit menin's tumor-suppressor activity. Interestingly, MEG3 and c-MET expression was also altered in human sporadic insulinomas (insulin secreting PNETs) with hypermethylation at the MEG3 promoter CRE-site coinciding with reduced MEG3 expression. These data provide insights into the ß-cell proliferation mechanisms that could retain their functional status. Furthermore, in MIN6 mouse insulinoma cells, DNA-demethylating drugs blocked cell proliferation and activated Meg3 expression. Our data suggest that the epigenetic activation of lncRNA MEG3 and/or inactivation of c-MET could be therapeutic for treating PNETs and insulinomas.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-met/genética , RNA Longo não Codificante/genética , Animais , Apoptose/genética , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Metilação de DNA , Humanos , Insulinoma/genética , Insulinoma/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Longo não Codificante/metabolismo , Regulação para Cima
16.
J Biol Chem ; 290(1): 90-8, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25395622

RESUMO

The relationship between serine palmitoyltransferase (SPT) activity and ORMDL regulation of sphingolipid biosynthesis was investigated in mammalian HEK293 cells. Each of the three human ORMDLs reduced the increase in long-chain base synthesis seen after overexpression of wild-type SPT or SPT containing the C133W mutation in hLCB1, which produces the non-catabolizable sphingoid base, 1-deoxySa. ORMDL-dependent repression of sphingoid base synthesis occurred whether SPT was expressed as individual subunits or as a heterotrimeric single-chain SPT fusion protein. Overexpression of the single-chain SPT fusion protein under the control of a tetracycline-inducible promoter in stably transfected cells resulted in increased endogenous ORMDL expression. This increase was not transcriptional; there was no significant increase in any of the ORMDL mRNAs. Increased ORMDL protein expression required SPT activity since overexpression of a catalytically inactive SPT with a mutation in hLCB2a had little effect. Significantly, increased ORMDL expression was also blocked by myriocin inhibition of SPT as well as fumonisin inhibition of the ceramide synthases, suggesting that increased expression is a response to a metabolic signal. Moreover, blocking ORMDL induction with fumonisin treatment resulted in significantly greater increases in in vivo SPT activity than was seen when ORMDLs were allowed to increase, demonstrating the physiological significance of this response.


Assuntos
Proteínas de Membrana/genética , Subunidades Proteicas/genética , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Fumonisinas/farmacologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Mutação , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Oxirredutases/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo , Transdução de Sinais , Esfingolipídeos/farmacologia , Especificidade por Substrato
17.
J Lipid Res ; 55(12): 2521-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25332431

RESUMO

Sphingolipid levels are tightly regulated to maintain cellular homeostasis. During pathologic conditions such as in aging, inflammation, and metabolic and neurodegenerative diseases, levels of some sphingolipids, including the bioactive metabolite ceramide, are elevated. Sphingolipid metabolism has been linked to autophagy, a critical catabolic process in both normal cell function and disease; however, the in vivo relevance of the interaction is not well-understood. Here, we show that blocking autophagy in the liver by deletion of the Atg7 gene, which is essential for autophagosome formation, causes an increase in sphingolipid metabolites including ceramide. We also show that overexpression of serine palmitoyltransferase to elevate de novo sphingolipid biosynthesis induces autophagy in the liver. The results reveal autophagy as a process that limits excessive ceramide levels and that is induced by excessive elevation of de novo sphingolipid synthesis in the liver. Dysfunctional autophagy may be an underlying mechanism causing elevations in ceramide that may contribute to pathogenesis in diseases.


Assuntos
Autofagia , Fígado/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Animais , Proteína 7 Relacionada à Autofagia , Ceramidas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Fígado/enzimologia , Fígado/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/ultraestrutura , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mutantes/metabolismo , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Proteínas Recombinantes de Fusão/metabolismo , Serina C-Palmitoiltransferase/genética
18.
J Biol Chem ; 289(9): 5386-98, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24425879

RESUMO

Insulinomas (pancreatic islet ß cell tumors) are the most common type of functioning pancreatic neuroendocrine tumors that occur sporadically or as a part of the MEN1 syndrome that is caused by germ line mutations in MEN1. Tissue-specific tumor predisposition from germ line mutations in ubiquitously expressed genes such as MEN1 could occur because of functional consequences on tissue-specific factors. We previously reported the proapoptotic ß cell differentiation factor HLXB9 as a downstream target of menin (encoded by MEN1). Here we show that GSK-3ß inactivates the proapoptotic activity of HLXB9 by phosphorylating HLXB9 at Ser-78/Ser-80 (pHLXB9). Although HLXB9 is found in the nucleus and cytoplasm, pHLXB9 is predominantly nuclear. Both pHLXB9 and active GSK-3ß are elevated in ß cells with menin knockdown, in MEN1-associated ß cell tumors (insulinomas), and also in human sporadic insulinomas. Pharmacologic inhibition of GSK-3ß blocked cell proliferation in three different rodent insulinoma cell lines by arresting the cells in G2/M phase and caused apoptosis. Taken together, these data suggest that the combination of GSK-3ß and pHLXB9 forms a therapeutically targetable mechanism of insulinoma pathogenesis. Our results reveal that GSK-3ß and pHLXB9 can serve as novel targets for insulinoma treatment and have implications for understanding the pathways associated with ß cell proliferation.


Assuntos
Proliferação de Células , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/patologia , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Proteínas de Homeodomínio/genética , Humanos , Células Secretoras de Insulina/patologia , Insulinoma/genética , Insulinoma/patologia , Camundongos , Fosforilação/genética , Estabilidade Proteica , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Ratos , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
19.
Biomed Res Int ; 2013: 194371, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24175284

RESUMO

The pyridoxal 5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) catalyses the first step of de novo sphingolipid biosynthesis. The core human enzyme is a membrane-bound heterodimer composed of two subunits (hLCB1 and hLCB2a/b), and mutations in both hLCB1 (e.g., C133W and C133Y) and hLCB2a (e.g., V359M, G382V, and I504F) have been identified in patients with hereditary sensory and autonomic neuropathy type I (HSAN1), an inherited disorder that affects sensory and autonomic neurons. These mutations result in substrate promiscuity, leading to formation of neurotoxic deoxysphingolipids found in affected individuals. Here we measure the activities of the hLCB2a mutants in the presence of ssSPTa and ssSPTb and find that all decrease enzyme activity. High resolution structural data of the homodimeric SPT enzyme from the bacterium Sphingomonas paucimobilis (Sp SPT) provides a model to understand the impact of the hLCB2a mutations on the mechanism of SPT. The three human hLCB2a HSAN1 mutations map onto Sp SPT (V246M, G268V, and G385F), and these mutant mimics reveal that the amino acid changes have varying impacts; they perturb the PLP cofactor binding, reduce the affinity for both substrates, decrease the enzyme activity, and, in the most severe case, cause the protein to be expressed in an insoluble form.


Assuntos
Proteínas de Bactérias/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/enzimologia , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Subunidades Proteicas/metabolismo , Fosfato de Piridoxal/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos , Cinética , Modelos Moleculares , Mimetismo Molecular , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Mutação , Multimerização Proteica , Quinonas/metabolismo , Serina C-Palmitoiltransferase/química , Espectrofotometria Ultravioleta , Sphingomonas/enzimologia , Especificidade por Substrato
20.
J Biol Chem ; 288(14): 10144-10153, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23426370

RESUMO

The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C termini in the lumen, and showed that they contain a single transmembrane domain. Deletion analysis revealed that the ability to activate the heterodimer is contained in a conserved 33-amino acid core domain that has the same membrane topology as the full-length protein. In combination with analysis of isoform chimera and site-directed mutagenesis, a single amino acid residue in this core (Met(25) in ssSPTa and Val(25) in ssSPTb) was identified which confers specificity for palmitoyl- or stearoyl-CoA, respectively, in both yeast and mammalian cells. This same residue also determines which isoform is a better activator of a mutant heterodimer, hLCB1(S331F)/hLCB2a, which has increased basal SPT activity and decreased amino acid substrate selectivity. This suggests that the role of the ssSPTs is to increase SPT activity without compromising substrate specificity. In addition, the observation that the C-terminal domains of ssSPTa and ssSPTb, which are highly conserved within each subfamily but are the most divergent regions between isoform subfamilies, are not required for activation of the heterodimer or for acyl-CoA selectivity suggests that the ssSPTs have additional roles that remain to be discovered.


Assuntos
Serina C-Palmitoiltransferase/fisiologia , Sequência de Aminoácidos , Aminoácidos/química , Animais , Membrana Celular/metabolismo , Dimerização , Ativação Enzimática , Genes Fúngicos , Glicosilação , Humanos , Lipídeos/química , Microssomos/metabolismo , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina C-Palmitoiltransferase/química , Esfingolipídeos/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...