Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 319: 121169, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567709

RESUMO

SH-containing polymers and nanoparticles are a significant direction in the creation of novel materials. The aim of this work is the synthesis of cellulose nanocrystals (CNC) with a surface modified by tosyl functions (CNC-Ts) and their further modification into SH-containing nanocrystals (CNC-SH). CNC-Ts were synthesized in an aqueous-organic emulsion from never-dried particles, while maintaining the size and supramolecular structure of CNC; the content of Ts-functions is up to 2.5 mmol·g-1. Structure of the derivatives was analyzed by TEM, XRD, CP/MAS 13C NMR and FTIR spectroscopies. Nucleophilic substitution and hydrolysis of the obtained thioisouronium salts leads to the production of CNC-SH. To quantify SH-groups we used elemental analysis, potentiometric titration and Folin-Ciocalteu and Ellman's reagents. It is shown that SH-groups on the surface are partially oxidized and are involved in a dense network of hydrogen bonds. Rheological properties of CNC-SH hydrosols are close to those of CNC, addition of H2O2 at acidic pH leads to an increase in viscosity of the system; H2O2 added at neutral pH causes opposite effect - viscosity decreases. CNC-SH have a high capacity for sorption of Cr(VI) in acidic environments and exhibit photoreductive properties under UV irradiation.

2.
Carbohydr Polym ; 200: 162-172, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30177154

RESUMO

One possible way of obtaining cellulose nanocrystals and aqueous sols with novel properties is based on modification of supramolecular structure of the polysaccharide. This modification involves rearrangements of hydrogen bonds and has an effect on polymer morphology, formation of surface reactive sites and interface interactions. Disc-like nanocrystals of cellulose II were prepared by solvolysis of regenerated cellulose in acetic acid/octanol medium in the presence of 0.4 mol% of phosphotungstic acid. The starting cellulose samples were dissolved and regenerated in the NaOH/thiourea system. Cellulose nanocrystals were studied by transmission electron microscopy, atomic force microscopy, dynamic light scattering, FTIR spectroscopy, XRD and thermogravimetric analysis. Colloidal stability of aqueous suspensions of cellulose nanocrystals in the presence of electrolyte (KCl) was studied. Their acid-base properties were revealed using potentiometric titration. The influence of electrolyte concentration on dynamic viscosity of the obtained hydrosols and their ability to show birefringence was established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...